Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Measurem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR

Authors: Fuchs, Hendrik; Novelli, Anna; Rolletter, Michael; Hofzumahaus, Andreas; Pfannerstill, Eva Y.; Kessel, Stephan; Edtbauer, Achim; +38 Authors

Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR

Abstract

Hydroxyl (OH) radical reactivity (kOH) has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements were used in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapour, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements (limit of detection < 1 s−1 at a time resolution of 30 s to a few minutes) is higher for instruments directly detecting hydroxyl radicals, whereas the indirect comparative reactivity method (CRM) has a higher limit of detection of 2 s−1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapour or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected into the chamber to simulate urban and forested environments. Overall, the results show that the instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds (mixing ratio of OH reactants were up to 10 ppbv). In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied to account for known effects of, for example, deviations from pseudo first-order conditions, nitrogen oxides or water vapour on the measurement. Methods used to derive these corrections vary among the different CRM instruments. Measurements taken with a flow-tube instrument combined with the direct detection of OH by chemical ionisation mass spectrometry (CIMS) show limitations in cases of high reactivity and high NO concentrations but were accurate for low reactivity (< 15 s−1) and low NO (< 5 ppbv) conditions.

68 references, page 1 of 7

Atkinson, R.: Gase-phase tropospheric chemistry of volatile organic compounds: 1. alkanes and alkenes, J. Phys. Chem. Ref. Data, 26, 217-290, 1997.

Atkinson, R., Aschmann, S. M., and Pitts, J. N.: Rate constants for the gas-phase reactions of the OH radical with a series of monoterpenes at 294 1 K, Int. J. Chem. Kinet., 18, 287-299, https://doi.org/10.1002/kin.550180303, 1986.

Atkinson, R., Aschmann, S. M., and Arey, J.: Rate constants for the gas-phase reactions of OH and NO3 radicals and O3 with sabinene and camphene at 296 2 K, Atmos. Environ., 24, 2647-2654, https://doi.org/10.1016/0960-1686(90)90144-C, 1990. [OpenAIRE]

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of Ox , HOx , NOx and SOx species, Atmos. Chem. Phys., 4, 1461-1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Subcommittee, I.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625-4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.

Berresheim, H., Elste, T., Plass-Dülmer, C., Eisele, F. L., and Tanner, D. J.: Chemical ionization mass spectrometer for longterm measurements of atmospheric OH and H2SO4, Int. J. Mass. Spectrom., 202, 91-109, https://doi.org/10.1016/S1387- 3806(00)00233-5, 2000.

Butkovskaya, N. I., Kukui, A., and Le Bras, G.: Branching fractions for H2O forming channels of the reaction of OH radicals with acetaldehyde, J. Phys. Chem., 108, 1160-1168, https://doi.org/10.1021/jp036740m, 2004.

Cameron, M., Sivakumaran, V., Dillon, T. J., and Crowley, J. N.: Reaction between OH and CH3CHO Part 1. Primary product yields of CH3 (296 K), CH3CO (296 K), and H (237-296 K), Phys. Chem. Chem. Phys., 4, 3628-3638, https://doi.org/10.1039/B202586H, 2002. [OpenAIRE]

Chatani, S., Shimo, N., Matsunaga, S., Kajii, Y., Kato, S., Nakashima, Y., Miyazaki, K., Ishii, K., and Ueno, H.: Sensitivity analyses of OH missing sinks over Tokyo metropolitan area in the summer of 2007, Atmos. Chem. Phys., 9, 8975-8986, https://doi.org/10.5194/acp-9-8975-2009, 2009. [OpenAIRE]

Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R., Ren, X., Thornberry, T., Carroll, M. A., Young, V., Shepson, P. ., Riemer, D., Apel, E., and Campbell, C.: Missung OH reactivity in a forest: evidence for unkown reactiv biogenic VOCs, Science, 304, 722-726, https://doi.org/10.1126/science.1094392, 2004.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Funded byView all
EC| PIMMS
Project
PIMMS
Proton Ionization Molecular Mass Spectrometry
  • Funder: European Commission (EC)
  • Project Code: 287382
  • Funding stream: FP7 | SP3 | PEOPLE
,
ANR| Cappa
Project
Cappa
Physiques et Chimie de l'Environnement Atmosphérique
  • Funder: French National Research Agency (ANR) (ANR)
  • Project Code: ANR-11-LABX-0005
iis
,
UKRI| Measurement of the OH chemical lifetime, concentrations of speciated RO2 radicals, and a new method for the field detection of OH radicals
Project
  • Funder: UK Research and Innovation (UKRI)
  • Project Code: NE/D004756/1
  • Funding stream: NERC
iis
,
NSF| Resolving Issues of Hydrogen Oxides Measurements: Laboratory Studies of HOx-NOx Chemistry and Measurement Intercomparisons
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1450838
  • Funding stream: Directorate for Geosciences | Division of Atmospheric and Geospace Sciences
iis
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.