Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Copernicus Publicati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Copernicus Publications
Other ORP type . 2018
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bayesian trend analysis of extreme wind using observed and hindcast series off the Catalan coast, NW Mediterranean Sea

Authors: Ortego, M. I.; Egozcue, J. J.; Tolosana-Delgado, R.;

Bayesian trend analysis of extreme wind using observed and hindcast series off the Catalan coast, NW Mediterranean Sea

Abstract

It has been suggested that climate change might modify the occurrence rate and magnitude of large ocean-wave and wind storms. The hypothesised reason is the increase of available energy in the atmosphere–ocean system. Forecasting models are commonly used to assess these effects, given that good-quality data series are often too short. However, forecasting systems are often tuned to reproduce the average behaviour, and there are concerns on their relevance for extremal regimes. We present a methodology of simultaneous analysis of observed and hindcast data with the aim of extracting potential time drifts as well as systematic regime discrepancies between the two data sources. The method is based on the peak-over-threshold (POT) approach and the generalized Pareto distribution (GPD) within a Bayesian estimation framework. In this context, storm events are considered points in time, and modelled as a Poisson process. Storm magnitude over a reference threshold is modelled with a GPD, a flexible model that captures the tail behaviour of the magnitude distribution. All model parameters, i.e. shape and location of the magnitude GPD and the Poisson occurrence rate, are affected by a trend in time. Moreover, a systematic difference between parameters of hindcast and observed series is considered. Finally, the posterior joint distribution of all these trend parameters is studied using a conventional Gibbs sampler. This method is applied to compare hindcast and observed series of average wind speed at a deep buoy location off the Catalan coast (NE Spain, western Mediterranean; buoy data from 2001; REMO wind hindcasting from 1958 on). Appropriate scale and domain of attraction are discussed, and the reliability of trends in time is addressed.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average