Powered by OpenAIRE graph
Found an issue? Give us feedback

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

Country: United Kingdom

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

1,575 Projects, page 1 of 315
  • Funder: European Commission Project Code: 237296
    more_vert
  • Funder: European Commission Project Code: 253205
    visibility30
    visibilityviews30
    downloaddownloads63
    Powered by Usage counts
    more_vert
  • Funder: European Commission Project Code: 300501
    more_vert
  • Funder: European Commission Project Code: 701192
    Overall Budget: 183,455 EURFunder Contribution: 183,455 EUR

    Hydrogen (H2) will play a central role in the future global energy economy. It is therefore of utmost importance to develop economic routes for the production of H2 to make it more attractive as energy carrier medium in the future. Particularly, Co and Ni based compounds have gained attention for molecular H2 catalysis lately. Co glyoxime and pentapyridine coordinative complexes as well as Ni phosphine compounds are promising candidates exhibiting high catalytic activity in both electro- and light driven H2 catalysis in water. Nevertheless, for technological application the catalysts have to be immobilized on electrode surfaces. The adsorption strongly alters the catalytic reactions, which is still not clearly understood. To investigate the adsorbed catalysts, advanced spectroscopic methods are required that are able to provide sensitive information on the catalytic reaction at a molecular level. The aim of this proposed research is to investigate the heterogeneous catalytic reaction mechanism of Co and Ni mediated catalysis using an innovative combination of potential controlled confocal resonance Raman and ATR FT infrared absorption spectroscopy assisted by electrocatalytic methods and DFT calculations. For this, the three mentioned types of catalysts will be adsorbed on metal oxide surfaces and their catalytic reactions spectroelectrochemically and electrochemically investigated. Special emphasis is led on the role of heterogeneous electron and proton transfer steps on the overall heterogeneous catalytic activity compared to the homogeneous case. Through variation of the electrode material, the modulating material/catalyst interaction is aimed to be investigated in detail. In the outcome, the results will afford a comprehensive picture of the mechanism of metal catalysed HER.

    visibility141
    visibilityviews141
    downloaddownloads43
    Powered by Usage counts
    more_vert
  • Funder: European Commission Project Code: 659764
    Overall Budget: 183,455 EURFunder Contribution: 183,455 EUR

    While we continue to develop alternative and renewable power sources, the capture and sequestration of CO2 from flue gas in fossil fuel power plants and other industrial processes is one viable solution to decrease our CO2 emissions. CO2 can be removed from flue gas by chemical looping, where a material chemically reacts with CO2 and is treated at a later stage to release pure CO2 and regenerate the starting material. Limestone, CaCO3, is the oldest material to be used for this purpose. However, although limestone is abundant and cheap, the CO2 absorption capacity rapidly decays with use because of undesirable changes to the microstructure. The proposed work will prepare and investigate novel ternary metal oxide ceramics designed to be mechanically stable after repeated thermal and CO2 cycling. In particular, the proposed work will determine whether similarities in the crystal structures of materials (the atomic scale) before and after a transition will lead to robust microstructures (the micro scale) that will retain functionality – in this case, high porosity and CO2 sorption capacity. The complex crystal structures, rich phase space, and strong bonding networks available in ternary phases to be studied will lead to materials that are less prone to degradation. This evolution will be studied at the atomic level using in situ spectroscopic techniques, and the microstructure evolution will be studied using novel in situ X-ray tomography methods, which allow the 3D visualization of the microstructure in real time as the chemical transformations take place. These new approaches to material design will be immediately relevant to many other scientific fields where chemical transformations and mechanical stability are important, such as battery electrodes, solid oxide fuel cells, solid ion conductors, and catalyst supports, all of which suffer from performance loss over time due to microstructure changes.

    visibility31
    visibilityviews31
    downloaddownloads416
    Powered by Usage counts
    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.