Powered by OpenAIRE graph
Found an issue? Give us feedback


Country: Germany
8 Projects, page 1 of 2
  • Funder: EC Project Code: 965124
    Overall Budget: 3,418,520 EURFunder Contribution: 3,418,520 EUR

    Over the last 20 years, femtosecond lasers have led to a host of novel scientific and industrial instrumentation enabling the direct measurement of optical frequencies and the realization of optical clocks, a Nobel Prize winning technology. Initially developed for fundamental science, the potential of femtosecond lasers for a wide range of cross-disciplinary applications has been demonstrated, including e.g. those in optical telecommunication, photonic analog-to-digital conversion, ultra-high precision signal sources for the upcoming quantum technologies and broadband optical spectroscopy in the environmental or bio-medical sciences and many more. Although, impressive cross-disciplinary demonstrations of the potential of femtosecond lasers are numerous, the technology has been hampered by its large size and high cost per system. The existing mode-locked semiconductor diode laser technology does not fulfil the needed performance specifications. The aim of the FEMTOCHIP project is to deliver a fully integrated chip-scale mode-locked laser with pulse energy, peak power and jitter specifications of a shoebox sized fiber laser system enabling a large fraction of the above-mentioned applications. Key challenges addressed are large cross-section, high gain, low background loss waveguide amplifiers, low loss passive waveguide technology and chirped waveguide gratings to accommodate high pulse peak power, to suppress Q-switching instabilities and to implement short pulse production by on-chip dispersion compensation and artificial saturable absorption. Therefore, the FEMTOCHIP consortium is composed of leaders in CMOS compatible ultra-low loss integrated SiN-photonics, rare-earth gain media development and deposition technology as well as ultrafast laser physics and technology for design, simulation and characterization to identify and address the key challenges in demonstrating a highly stable integrated femtosecond laser with table-top performance.

  • Funder: EC Project Code: 101099405
    Overall Budget: 3,111,970 EURFunder Contribution: 3,111,970 EUR

    Major challenges of the European and worldwide society such as the climate crisis, insufficient environmental protection, food and pharmaceutical shortages, and military aggressions require technologies that substitute fossil fuels with sustainable energy sources in basically all industries. Following the green deal of the EU commission, the European continent shall become the first climate-neutral continent by 2050. The chemical industry is a major contributor to CO2 emissions, as it accounts for about 30% of the industry’s total energy use worldwide. Even though so-called photochemistry promises to sustainably produce chemical compounds by (sun)light, corresponding reactors suffer from insufficient light management, even in modern micro flow reactors, which hinders their upscaling to applications in industry. This is exactly where the key to the technological and economic breakthrough lies, and this is where reaCtor comes into play. It will contribute to the ambitious goal of a sustainable chemistry by developing and validating a novel type of light-driven chemical reactor with enormous scale-up potential for industrial applications. It will be based on an interdisciplinary and innovative technological approach, combining optical fibres for smart light management, metallic nanoparticles as efficient energy transmitters, nano- and micro-fabrication for micro-fluidic functionalization as well as monolithic optical integration, and flow chemistry as an eco-friendly and safe chemical technology. For the first time, a demonstrator of the novel reactor architecture will be set-up and benchmarked with relevant photochemical reactions. Ultimately, the proposed fibre-based microfluidic reactors will enable implementation of new and efficient routes driven by light to prepare pharmaceuticals, agrochemicals, and materials on both lab and industrial scales.

  • Funder: EC Project Code: 101070120
    Overall Budget: 6,317,690 EURFunder Contribution: 6,317,690 EUR

    We aim to transform virus biomanufacturing processes and enable new quality control strategies by a continuous, real-time capable biohybrid sensor technology to detect cell-based virus infection cycles. BioProS sensor concept makes use of an optical sensor technology in combination with cell-based measurement principles. In this context a platform technology will be developed that can be adapted to multiple specific analytes which enables its applicability in different industries and production settings. The development of such platform technology together with its technological complexity requires the involvement of multiple stakeholders throughout Europe and across disciplines (biology, engineering science, data science, manufacturing experts). Digitalisation has to extend from the very beginning of the process into the whole manufacturing chain, utilising all advances achieved in smart and lot-size-one manufacturing in recent years. This leads to the closely intertwined interaction of technical, informational and biological systems also referred to as bio-intelligent systems. This new paradigm opens up a large new space for innovations, recognised as a strategic field in America, Asia and Europe. Based on the manufacturing excellence leadership of Europe, BioProS will significantly contribute to all expected impacts of the Destination “Digital and Emerging Technologies” and explicitly to each of the four expected outcomes of this call topic. The consortium aims to gather all required expertise and set the basis for international partnerships. In close cooperation with pan-European initiatives and with the support of an industry advisory board, project partners aim to transform the vision of bio-intelligent manufacturing and demonstrate the applicability of disruptive technologies in an industrial setting. We will promote the research community for bio-intelligent methods and applications worldwide, and at the same time create technology sovereignty for Europe.

  • Funder: EC Project Code: 685716
    Overall Budget: 9,755,890 EURFunder Contribution: 8,334,790 EUR

    According to the European Energy Storage Technology Development Roadmap towards 2030 (EASE/EERA) energy storage will be of the greatest importance for the European climate energy objectives. The Sintbat project aims at the development of a cheap energy efficient and effectively maintenance free lithium-ion based energy storage system offering in-service time of 20 to 25 years. Insights gained from advanced in-situ and in-operando analysis methods will be used for multi scale modelling targeting on the simulation of aging mechanisms for a reliable lifetime prediction and enhancement. In addition, the latest generation of anode materials based on silicon as well as a prelithiation process for lifetime enhancement will be implemented in the cell manufacturing process. The implementation of high energy materials combined with a low cost and environmental benign aqueous cathode manufacturing process will lead to remarkable cell costs reduction down to 130 € per kWh. This will enable battery based storage system for an economic reasonable price of less than 400 € per kWh (CAPEX) and will lower the OPEX down to less than 0.09 € per stored kWh for the targeted in-service time of 20 to 25 years (10,000 cycles). The technical developments will be supported by the set-up of a relevant roadmap as well as a catalogue for good practice. To guarantee the highest possible impact for the European economy the Sinbat consortium installed an Industrial Advisory Board including various European battery material suppliers, cell manufacturer and end-users whereby the whole value added chain in this way is completed within the Sintbat project. This strong interaction of the Sintbat consortium with relevant stakeholders in the European energy economy will assure that battery based energy storage systems are becoming an economic self-sustaining technology.

  • Funder: EC Project Code: 875514
    Overall Budget: 7,999,730 EURFunder Contribution: 7,999,730 EUR

    After the successful project Sintbat, this project aims to continue the effort with the modified objectives of LC-BAT-2-2019. This new call moves the focus to a new KPI, the cycle related costs per energy: €/kWh/cycle. It very well reflects the real need of the customers if a minimum volumetric energy density is added. An extended LCA, cradle-to-grave will be setup to judge the environmental impact of the different options and to choose the best. To show the both ECO-aspects (ECOlogical and ECOnomical) of our project the acronym ECO²LIB was created. Especially for the deployment of advanced battery systems, time to market is an important factor. This criterion is helpful to select between the different electrochemical systems: - Lithium-Sulphur: is heavily investigated, but up to now doesn’t show a break-through to reach acceptable cycle life - Lithium-Air: For this system, many major problems are known to be solved, like Li metal protection, dendrite growth, cleaned air inlet, oxygen-stability of the catholyte - Zinc-Air: is better, but this system, as all Metal-Air systems, will never lead to a maintenance-free battery - All-Solid-State: has a chance in the polymer version, but rather not in oxidic or sulfidic version - Sodium-Ion: can be potentially interesting for large-scale storage due to cost advantages (replacing Cu with Al), but is still held back due to the lack of a useful and stable anode material and a complex surface chemistry - Organic-based systems: can be potentially interesting for large-scale storage due to potential sustainability impacts, but have problems regarding energy density (especially volumetric), cycling stability, and materials degradation Consequently, the consortium decided to continue the improvement of the well-established Lithium-Ion system with advanced materials, methods and corresponding recycling-concept. So it will be possible to directly exploit the results of ECO²LIB in an IPCEI project, which is under preparation.

Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.