<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::d907b152e4663e189ee8e2ba8bc730ff&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::d907b152e4663e189ee8e2ba8bc730ff&type=result"></script>');
-->
</script>
SUSTCERT4BIOBASED project is set on fostering the adoption of effective and robust sustainability certification schemes and business-to-business labels for industrial biobased systems to support tracing the sustainability of biobased products along the value chains and trades within the EU and globally for responsible production and consumption. To this end, a monitoring system will be developed with a life-cycle perspective along four themes (environment, social, economic and governance) considering the complexity and relationships of all dimensions of sustainability and the rules and procedures on how the schemes are managed. This system will be optimized with pilot audit in practice and testing on existing schemes/labels for biobased systems evaluating their performance in the different themes and their coverage of the list of minimum requirements. Costs and benefits from the adoption of certification schemes and labels will be assessed, considering actual economic as well as internalized environmental and social ones. Data will be generated on volumes of biological resources and biobased products in global trade flow and extent of their certification. We will leverage the results of the project to provide best practices and recommendations to 4 key target groups: policy makers, sustainability system community, industrial biobased value chain actors, and regional/rural bioeconomy stakeholders. Our vision is that this will result in harmonized system requirements, continuous improvement and enhanced adoption of sustainability certification schemes and labels, and provide a significant contribution towards establishing a circular and sustainable bio-based industry for Europe contributing to the Bioeconomy Strategy and Green Deal. The large multi-sectorial stakeholders involvement (through an international Network of Interest domain and a comprehensive Advisory Board) will enable SUSTCERT4BIOBASED to increase outreach and aligning with ongoing international efforts.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::b8e6b4da328e4df41cf132262cfa6c58&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::b8e6b4da328e4df41cf132262cfa6c58&type=result"></script>');
-->
</script>
BioTheRoS Project aims at developing a holistic methodology that will boost the scale-up of sustainable biofuels via thermochemical conversion technologies. These are pyrolysis upgrading through hydrodeoxygenation and Fischer-Tropsch synthesis from biomass gasification. The project will bring together key actors at a both European and International level, such as technological and social experts, renewable energy-oriented associations along with industrial experts that will bring and exchange their knowledge in order to reach the project targets. Within the project, several non-food biomass feedstock will be analyzed and optimized across their entire value chain. Barriers linked with the selected feedstocks supply and pretreatment will be identified. Furthermore, AI-based predictive models will be developed, in order to be adapted to the scale-up cases. Then, the most promising biomass feedstock will be tested experimentally in the studied thermochemical reactors. At this point of the project, technical constraints and opportunities for the scale-up of the sustainable biofuels thermochemical processes will be identified. Possible synergies of blending pyrolysis oil and gasification based advanced biofuels will be investigated by a potential end-user (petroleum company). The selected data will be used as an input for advanced modelling tools, including process modelling, CFD tools and LCA/LCC/sLCA tools results of which will feed a multi-criteria analysis to derive generalized up-scaling rules and guidelines of the produced biofuels. The engagement of several stakeholders in the planning of the scaling-up of sustainable biofuels production will be crucial at this point, since they will review the project results and assess if a biofuel production technology can be delivered from the lab/pilot to a larger-scale, by taking into account operational difficulties, plant cost and plant capacity limitations (technological barriers).
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e7a8197870f30c0db05bc7ff6b1beec9&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e7a8197870f30c0db05bc7ff6b1beec9&type=result"></script>');
-->
</script>
The “Blue Acid/Base Battery” (BAoBaB), stores electrical energy using pH and salinity differences in water. The principle of BAoBaB is altering the acid-base balance by means of an excess of available electricity to obtain an acid and base from its corresponding salt solution. When electricity is needed, acid and base are recombined into their corresponding salt solution again while obtaining electrical work from the entropy and enthalpy gain. Our goal is to develop this totally new, environment-friendly, cost-competitive, scalable, water-based electrical energy storage system from TRL3 to TRL5. Our objectives are: 1. to establish and extend the potential of BAoBaB to become a reliable and environmentally friendly way of storing (renewable) electricity at kWh-MWh scale for application at user premises or at substation level. 2. to understand and enhance mass transfer in round-trip conversion techniques and hence to improve the energy conversion efficiencies of the BAoBaB system, aiming an efficiency >80% and >10 times higher energy density than in Pumped Hydropower Storage. 3. to validate under accepted utility use conditions an automatically operated BAoBaB system (with corresponding battery management) at a scale of 1 kW power and 7 kWh energy storage. 4. To pave the road for cost competitive energy storage with attention to life-cycle cost and performance, aiming at <0.05 €/kWh/cycle. BAoBaB operates at a timescale of hours to days, and hence will enable a larger penetration degree of distributed and intermittent renewable energy sources. Not only the storage capacities are huge (kWh to MWh), resources are plentiful (salt and water) and environmental risks are minimal. Together with the location independence and non-toxic nature, penetration rate can be high within the EU and outside, providing the EU export opportunities.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::d0b9c20f90c9460f3eabaf00b767f766&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::d0b9c20f90c9460f3eabaf00b767f766&type=result"></script>');
-->
</script>
The on-going energy transition towards a decarbonized economy is changing profoundly the infrastructure of the power grids worldwide. Conventional high-power transformers are not fully prepared to overcome these challenges, as they do not have intrinsic capabilities regarding active system support. Instead, Solid-state Transformers (SSTs) have emerged in the last years as a disruptive technology able to extend the typical functionalities of a regular transformer, optimizing the power flows and introducing a high degree of digitalization and intelligence in the network. However, SSTs are not still a mature technology and only prototypes of up to 15 kV and 15 modules have been developed in the range of high frequency (40 kHz) so far. Therefore, their use is currently restricted to low-voltage applications. In this context, SSTAR aims to increase the operation voltage level of SSTs to enlarge their applications within the energy power sector while improving its performance in a reliable, cost-optimized and sustainable way. To do so, three main R&I Lines will be developed: 1) Sustainable biobased dielectric fluid able to increase the SST modules insulation voltage while achieving up to 50% of CO2 saving comparing to traditional oils 2) New SST module based on SiC with a bidirectional Inductive Power Transfer (IPT) system able to increase the individual voltage and switching frequency of SST modules up to 1.5 kV and 50kHz respectively with a total efficiency of 98.5% and 3) Decentralized control cascade H-bridge (CHB) converter to scale-up the number of modules in a single SST device to achieve the voltage levels of transmission grids. The combined effect of these innovations will be validated at TRL 4 in two certified test-beds in Spain and Portugal. Hence, SSTAR seeks to pave the way for the development of new disruptive HV SST devices more attractive for commercial purposes than the prototypes made so far, and able to be used in distribution and transmissions grids.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::3560edb8ee377e788a5eb5e12e9650a3&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::3560edb8ee377e788a5eb5e12e9650a3&type=result"></script>');
-->
</script>