In 2025 around 11 billion tonnes of plastic waste will pollute the environment. Therefore, a circular economy with biotransformation and biodegradation of oil-based plastics is as crucial as implementing biobased and biodegradable materials. Transforming lignocellulosic waste biomass into commercially valuable “green” materials is an emerging and promising way to minimize waste, substitute plastic and reduce our carbon footprint. As a waste resource, we suggest walnut shells, in which we discovered the interlocked 3-D puzzle cells. The homogeneity, the high surface area and the channels make these cells interesting for transformation into biodegradable bioplastic. We plan to dissolve the walnut shells in deep eutectic solvent to separate the cells, add water to regenerate lignin and recycle the solvent. The result of this closed process circle is a NUT slurry as a basis for our materials. To tailor and functionalize the composite for different applications we propose to add bacterial cellulose pellicles, a waste from kombucha fermentation or produced in bioreactors. The pure cellulose fibrils with high tensile strength are an exciting counterpart to the high lignin content pressure optimised puzzle cells. With different ratios of the two agri-residues we will tune the material properties for NUTplastic and NUTleather. Sustainable, energy and resource efficient, biodegradable NUTmaterials with a low carbon and environmental footprint are envisaged for the packaging and textile sector. The project activities comprise 1) development and characterisation of NUTleather and NUTplastic products at the demonstration level 2) life cycle analysis, cost of goods and carbon footprint, 3) define endusers, market analysis, potential industrial partner, buisness plan and IP strategy. We have a strong project team with highly motivated and experienced members with complimentary backgrounds and a solid wish to prove the puzzle cell performance in sustainable materials.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::41b9828a38d4db012b616d1dcd202eb4&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::41b9828a38d4db012b616d1dcd202eb4&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::efa091601bcee4779fac878cecfcfb63&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::efa091601bcee4779fac878cecfcfb63&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::4313a47e0e075feb0300f706a1b43077&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::4313a47e0e075feb0300f706a1b43077&type=result"></script>');
-->
</script>
Climate change is a concern for states both at home and abroad. However, disparities often exist between the picture painted by climate diplomacy and domestic policy measures, be it in the level of priority afforded to climate action, or the integration of climate concerns across policy silos. A key area of work for climate diplomacy is human mobility in the context of climate change, which brings into stark relief the cross-border reach of climate change impacts and is billed as one of the biggest societal challenges of climate change. Much of the focus until now has been on the vulnerabilities and resilience of individuals, communities, and states in the Global South most likely to be affected. However, little is known about the political sphere and the climate diplomatic practices of states in the Global North in relation to climate change and human mobility, and in turn how these diplomatic efforts tally with domestic climate action. This project therefore asks the following question: How are nation-states developing practices of international climate diplomacy in relation to climate change and human mobility and to what extent do these align or discord with their practices at the state level? This question will be answered with a comparative case study of five European nation-states. In the first work package, the international climate diplomacy practices of these states will be examined, with the second work package concentrating on domestic policymaking. In the third and fourth work packages within-case and cross-case comparisons will be undertaken respectively, to ascertain whether practices at the international level align or discord with practices at the state level and to compare these findings across cases. The fifth work package will conduct a critical analysis of the findings to feed into conceptual and political debates on climate change and human mobility.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::385eeaa07fd7094086002d2d00fe349c&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::385eeaa07fd7094086002d2d00fe349c&type=result"></script>');
-->
</script>
Granular materials are omnipresent in our daily life. The same granular material can behave like solid and fluid, which poses a formidable challenge to the constitutive models and numerical methods. Traditionally, constitutive models for the solid- and fluid-like behaviour have been developed for the respective flow regimes in different engineering/scientific disciplines with hardly any intersections. A single constitutive model capable of describing the transient behaviour during phase transitions in both solid-like and fluid-like regimes is a challenging task with enormous application potential. MOTRAN takes on this challenge with a simple yet efficient ansatz by decomposing the stress rate into a frictional and collisional part, which gives rise to an unconventional constitutive model with the 2nd order strain rate similar to the acceleration of motion. It serves as an excellent classifier for steady and transient motions. This constitutive model is then augmented to include a length scale in micropolar continuum for multiscale analysis. Based on the mixture theory, the field equations are established in rate form for the first time and discretised by a multi-layer SPH model. For polydisperse granular flow with individual large particles, the SPH model is coupled with own developed Surface Mesh Represented DEM to simulate particles of arbitrary shapes. Advanced solution techniques are developed based on multi-GPU acceleration for high fidelity simulation of large-scale problems. The constitutive model is calibrated by laboratory experiments on natural granular materials and their transparent surrogate. The numerical model is validated by scaled model tests under elevated acceleration in centrifuge as well as real-world cases of our database. MOTRAN is an exciting endeavour with the potential to create a new paradigm that will revolutionise the way how transient granular flow is to be modelled.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::9936ac4ffde25b247cac7fa62a341b39&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::9936ac4ffde25b247cac7fa62a341b39&type=result"></script>');
-->
</script>