Cyber-MAR is an effort to fully unlock the value of the use of cyber range in the maritime logistics value chain via the development of an innovative simulation environment adapting in the peculiarities of the maritime sector but being at the same time easily applicable in other transport subsectors. A combination of innovative technologies are the technology enablers of the proposed Cyber-MAR platform which is not only a knowledge-based platform but more importantly a decision support tool to cybersecurity measures, by deploying novel risk analysis and econometric models. CSIRTs/CERTs data collected will be analysed and feed the knowledge-based platform with new-targeted scenarios and exercises. Through Cyber-MAR, the maritime logistics value chain actors will increase their cyber-awareness level; they will validate their business continuity management minimizing business disruption potential. Cyber-MAR will act as a cost-efficient training solution covering the maritime logistics value chain.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::0b05fe1feb39040cb83ceb27e6f54bca&type=result"></script>');
-->
</script>
views | 5,677 | |
downloads | 1,354 |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::0b05fe1feb39040cb83ceb27e6f54bca&type=result"></script>');
-->
</script>
5G-LOGINNOV will focus on seven 5G-PPP Thematics and support to the emergence of a European offer for new 5G core technologies in 11 families of use cases. 5G-LOGINNOV main aim is to design and innovative framework addressing integration and validation of CAD/CAM technologies related to the industry 4.0 and ports domains by creating new opportunities for LOGistics value chain INNOVation. 5G-LOGINNOV is supported by 5G technological blocks, including new generation of 5G terminals notably for future Connected and Automated Mobility, new types of Internet of Things 5G devices, data analytics, next generation traffic management and emerging 5G networks, for city ports to handle upcoming and future capacity, traffic, efficiency and environmental challenges. 5G-LOGINNOV will deploy and trail 11 families of Use cases beyond TRL7 including a GREEN TRUCK INNITIAVE using CAD/CAM & automatic trucks platooning based on 5G technological blocks. Thanks to the new advanced capabilities of 5G relating to wireless connectivity and Core Network agility, 5G-LOGINNOV ports will not only significantly optimize their operations but also minimize their environmental footprint to the city and the disturbance to the local population. 5G-LOGINNOV will be a catalyst for market opportunities build on 5G Core Technologies in the Logistics domains, thus being a pillar of economic development and business innovation and promoting local innovative high-tech SME and Start-Ups. 5G-LOGINNOV will open SMEs’ and Start-Ups’ door to these new markets using its three Living Labs as facilitators and ambassadors for innovation on ports. 5G-LOGINNOV promising innovations are key for the major deep sea European ports in view of the mega-vessel era (Hamburg, Athens), and are also relevant for medium sized ports with limited investment funds (Koper) for 5G.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::2c098124fd76002e222d279cfa33301e&type=result"></script>');
-->
</script>
views | 205 | |
downloads | 196 |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::2c098124fd76002e222d279cfa33301e&type=result"></script>');
-->
</script>
Ports are essential for the European economy; 74% of goods exported or imported to the EU are transported via its seaports. At the same time, the challenges they face are only getting greater: Volumes of cargo increase while they also arrive in a shrinking number of vessels: Post-Panamax vessels have a capacity of more than 18k containers. Port operators need to comply with increasingly stricter environmental regulations and societal views for sustainability. A sustainable land-use strategy in and around the port and a strategic transition to new, service-based, management models that improve capacity and efficiency are paramount. They are key enablers for ports that want to keep pace with the ocean carriers needs and establish themselves as trans-shipment hubs with a ‘societal license to operate’; for ports whose land strategy, hinterland accessibility and operations are underpinned by circular economy principles. COREALIS proposes a strategic, innovative framework, supported by disruptive technologies, including IoT, data analytics, next generation traffic management and 5G,for modern ports to handle future capacity, traffic, efficiency and environmental challenges. It respects their limitations regarding the port land, intermodal infrastructure and terminal operation. It proposes beyond state of the art innovations to increase efficiency and optimize land-use, while being financially viable, respecting circular economy and being of service to the city. Through COREALIS, the port will minimize its environmental footprint to the city, it will decrease disturbance to local population through a reduction in the congestion around the port. It will be a pillar of business innovation, promoting local startups in disruptive technologies of mutual interest. COREALIS innovations are key both for the major deep sea European ports in view of the new mega-vessel era, but also relevant for medium sized ports with limited investment funds for infrastructure and automation.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::884bd42d4bad3bc84b607e9781087c64&type=result"></script>');
-->
</script>
views | 837 | |
downloads | 519 |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::884bd42d4bad3bc84b607e9781087c64&type=result"></script>');
-->
</script>
MOSES aims to significantly enhance the SSS component MOSES aims to significantly enhance the SSS component of the European container supply chain by addressing the vulnerabilities and strains that relate to the operation of large containerships. MOSES will follow a two-fold strategy for reducing the total time to berth for TEN-T Hub Ports and stimulating the use of SSS feeder services to small ports (hub and spoke traffic) that have limited or no infrastructure. MOSES will achieve its objectives by implementing the following innovations: (i) For the SSS leg, an innovative, hybrid electric feeder vessel designed to match dominant SSS business cases that will increase the utilization rate of small ports. The feeder will be outfitted with a robotic container-handling system that is self-sufficient in terms of (un)loading containerised cargo and will simplify the process at the Hub Ports while improving the operational capacity of small ports; (ii) For DSS ports, the adoption of an autonomous vessel manoeuvring and docking scheme (MOSES AutoDock) that will provide operational independency from the availability of port services. This scheme will be based on the cooperation of (a) a swarm of autonomous tugboats that automates manoeuvring with (b) an automated docking system based on an existing product; (iii) A digital collaboration and matchmaking platform (MOSES platform) aiming to match demand and supply of cargo volumes by logistics stakeholders using Machine Learning (ML) and data driven-based analysis to maximize SSS traffic. MOSES will be validated by pilot demonstrations in relevant testing environments (TRL5), supported by concrete business cases. A sustainability framework will be developed within the project for evaluating the performance and viability of the proposed innovations with sustainability criteria and benchmarking them against alternative transportation modes. This evaluation will also lead to concrete policy recommendations regarding SSS in Europe.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::206018c1391211eec14369a1395c983b&type=result"></script>');
-->
</script>
views | 835 | |
downloads | 713 |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::206018c1391211eec14369a1395c983b&type=result"></script>');
-->
</script>
SEAMLESS aims at developing and adapting missing building blocks and enablers into a fully automated, economically viable, cost-effective, and resilient waterborne freight feeder loop service for Short Sea Shipping (SSS) and/or Inland Waterways Transport (IWT). Autonomous systems will be integrated to ensure safe, resilient, efficient, and environmentally friendly operation to shift road freight movements to hinterland waterways, while enhancing the performance of the TEN-T network. The service will be delivered 24/7 by a fleet of autonomous cargo shuttles, with humans-in-the-loop located in Remote Operation Centres (ROCs), which efficiently cooperate with automated and autonomous shore-side infrastructure and safely interact with conventional systems. The services will rely on a redesigned logistics system enabling seamless freight flows by minimising delays at intermodal nodes. A digital bird’s eye view of the supply chain allows the exploitation of real-time information for planning optimisation and reconfiguration to support resilient logistics, incl. digitalised administrative procedures. The SEAMLESS building blocks will be verified and validated by conducting full-scale demonstrations in selected real-world scenarios. Transferability will be fully demonstrated in selected use cases that cover a wide range of transport applications and geographical regions throughout Europe. Based on a structured methodological framework evaluating sustainability criteria, they will act as guidance for the replication of the project results beyond the project scope and timespan. Novel business models will be thus developed and provide a framework for implementing the SEAMLESS service to minimise investment risk for first movers. Regulatory gaps and challenges related to autonomous vessel operation (e.g. social aspects) will be identified, and recommendations for policy makers to allow the smooth and safe deployment of fully automated services will be provided.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::09afdeffa5c017c8d88a9fce3a10b32d&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::09afdeffa5c017c8d88a9fce3a10b32d&type=result"></script>');
-->
</script>