Powered by OpenAIRE graph
Found an issue? Give us feedback

FLEXIBLE ELEKTRISCHE NETZE FEN GMBH

Country: Germany

FLEXIBLE ELEKTRISCHE NETZE FEN GMBH

3 Projects, page 1 of 1
  • Funder: European Commission Project Code: 957788
    Overall Budget: 8,233,500 EURFunder Contribution: 6,965,520 EUR

    The project HYPERRIDE (HYbrid Provision of Energy based on Reliabilty and Resiliancy via Integration of Dc Equipment) contributes to the field implementation of DC and hybrid ACDC grids. Starting with the definition of most relevant fields of application for DC grids (local microgrids, grid enforcement to overcome congestions, coupling of AC grid sections, etc.), the enabling technologies will be specified in detail on different levels. Starting from the system perspective, guidelines for grid planning and operation are developed. To optimize invest for the use case dependent use of assets available sizing tools are adapted for the field of DC grids.DC circuit breakers are key technologies for grid protection needed to overcome the main concerns related to these infrastructures. Therefore, HYPERRIDE will raise the TRL of the most promising approaches currently available with a main focus on MVDC breakers. To enable grid automation DC sensors are developed further to provide field ready devices to create data for optimal grid automation. Automation algorithms will be created, validated in a test platform and transferred towards demonstration. This also involves concepts and solutions for cyber security and fault detection. In case of grid faults necessary solutions are developed to prevent cascading effects. For fault prevention databases are created to trigger preventive measures. With demonstrations in three countries (Aachen/Germany, Lausanne/Switzerland, Terni/Italy) the project will showcase relevant and above-mentioned enabling technologies within a wide range of use cases. Benefits of the solutions will be evaluated, especially the integration potential of renewables with respect to conventional AC grids. Finally, business models are created for the products, services and applications in HYPERRIDE.Consequently, HYPERRIDE will actively identify and provide solutions to overcome barriers for a successful roll-out of new infrastructure concepts throughout Europe.

    more_vert
  • Funder: European Commission Project Code: 727481
    Overall Budget: 4,996,650 EURFunder Contribution: 4,996,650 EUR

    Future energy systems will use renewable energy sources to minimise CO2 emissions. Currently large generators powered by fossil fuel turbines maintain the stability and quality of energy supplies through their inertia. The inertia of these generator-turbine groups gives providers a significant time window in which to react to network events. We urgently need to find ways to stabilise energy systems with up to 100% RES (where inertia is often lost due to power converter mediated energy transfer) to generate “RE-SERVEs” so that society can relax in the knowledge that it has a stable and sustainable energy supply. RE-SERVE will address this challenge by researching new energy system concepts, implemented as new system support services enabling distributed, multi-level control of the energy system using pan-European unified network connection codes. Near real-time control of the distributed energy network will be enabled by innovative 5G based ICT. Energy system use case scenarios supplied by energy providers will form the basis of energy system models. Performance characteristics of the new control mechanisms will be investigated through integration of energy simulations and live 5G communications. We will create a pan-European multi-site simulation test-bed, bringing together the best facilities in Europe. RE-SERVE results include published models of system support services, innovative architectures for the implementation of the services, performance tests on our pan-European real-time simulation, and live, test-beds, a model for pan-European unified network connection codes and actions to promote results to standardisation organisations, all of which maintain the RE-SERVE in energy systems. Commercialisation of results will result in breakthroughs in the efficient utilisation of use of RES, a spin-off and a wide range of enhanced professional solutions and services.

    more_vert
  • Funder: European Commission Project Code: 101112295
    Overall Budget: 39,851,300 EURFunder Contribution: 11,990,200 EUR

    Climate change, CO2 footprint, energy transition, safety & security as well as sovereignty are key issues that the common population can very well relate to today. As we face critical challenges, research and development in our ECS domain needs to address them more than ever. In particular the energy transition needs to be accelerated in order to become more independent from gas and oil energy, which was considered being available at low costs and without limits until recently. This assumption has been proven to be based on very fragile grounds and it has come to an end. One solution to accelerate the energy transition is to use all generated energy. This means that overflow energy produced in wind or solar parks needs to be available in periods when common energy generation is lacking. This requires important investments into infrastructure, which will only flow, if investors trust into the technologies enabling solutions. The faster the trust is built, the faster the transition can be realized. On the other hand, technologies and products that will ensure an economic use of resources and enable long and trusted lifetime of systems and components in the ECS domain have to be developed. ARCHIMEDES contributes to this in the domains of automotive, aviation and industry. In ARCHIMEDES, components, models and methodologies to increase the efficiency and lifetime of the propulsion components, power components and energy storage devices in automotive, aviation and industry will be developed. This will support the energy transition on the consumer`s side. In order to support this mission, ARCHIMEDES aims to change technologies and products in the automotive, aviation, infrastructure domains and the related ecosystem towards a resilient, de-carbonized, digitalized, and green EU: It will help building trust in the new technologies and thus contribute to accelerating the energy transition, safety and security.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.