As the only airborne cloud research platform holder in Eastern Europe, INCAS is in the perfect position to be a well-known R&D organisation that obtain urgently needed data sets, process and interpret them in order to improve future climate projections. However, to date, a lack of presenting these capabilities has left INCAS too little known in the cloud research community and therefore, underutilized research partner with excellent and very useful facilities. Through the BRACE-MY project, INCAS team will obtain the required skills and an additional equipment needed to complement their research capabilities with state-of-the art aerosol sampling techniques. The foreseen research, conducted in conjunction with strong twinning activities will transfer the skills required for INCAS to perform aerosol-cloud interaction research and elevate its reputation to that of a leader in the cloud and aerosol community. This will be achieved by using a “learning by doing” approach to transfer the best practices for conducting research, disseminating results and educating young scientists from the world-class project partners to INCAS. In particular, this will include: the development of an ice nucleating particle counter based on a state-of-the-art aerosol sampling system provided by a project partner, conducting research flights, publishing and presenting research results within internationally recognized platforms, organizing and lecturing at summer schools designed for upcoming researcher in the field and gaining the managerial skills required to become a recognized partner for aerosol and cloud microphysics research. The project partners have been selected to ensure that all of the objectives are guided by leaders in the field of aerosol and cloud research and acting as a research provider. Therefore, BRACE-MY will give INCAS, a research institute in a “widening country”, the opportunity to elevate itself to an internationally recognized cloud and aerosol research institute.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::34cade2272e18aa9d422d3d292ed9795&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::34cade2272e18aa9d422d3d292ed9795&type=result"></script>');
-->
</script>
The importance of understanding and monitoring atmospheric physics has increased drastically in recent years due to the anthropogenic impact on climate. One crucial research field is the understanding of wind and temperature distributions in the atmosphere to enhance climate models and improve weather forecasts. There is currently a major data gap for continuous measurements above 5 km, which is the maximum height of commercial compact wind radars and lidars. The goal of EULIAA is the development of a lidar array measuring autonomously the atmospheric wind and temperature from 5 km up to 50 km on a 24/7-basis over a long period of time (> 1 year without maintenance) and covering a large observation area (up to 10’000 km2). EULIAA’s lidar units are low-priced, compact, efficient, easily transportable, and autonomous thanks to low power requirements (by wind turbines or solar panels). EULIAA will yield novel data sets in near real-time for implementation into European databases Copernicus and GEOSS, that will fill current data-gaps and help to monitor the effects of climate change and to evaluate climate protection measures. The baseline technology was demonstrated in the first field campaign with a lidar system that operates in the IR and is currently being transferred to a European industrial partner. Once the enhanced capability developed within EULIAA has been demonstrated and validated in difficult-to-reach regions (polar, equatorial, and mountain), with a high TRL (6–8), a business plan and roadmap for an European array will be produced, involving relevant industrial, standardisation, and end-user actors. The EULIAA project (48 months and 3M€ grant requested) gathers 7 partners from 5 countries with experts in lidar and its subsystems, atmospheric observatories, and atmospheric data provider. It contains all the necessary disciplines to ensure the technological development, data transfer, and sustainable exploitation.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::0a32af0192a4226b88019efe14454f60&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::0a32af0192a4226b88019efe14454f60&type=result"></script>');
-->
</script>
ENVOL main objective is to provide Europe its prime commercial, competitive and green launch service, utilizing a true New Space approach to offer low-cost, frequent and flexible access to space to small satellites in the range of 100 to 200 kg by 2024. To achieve this goal, the tip of the spear of European innovative space launch companies has joined forces to develop a vertical orbital launch system that will: • Act as an accelerator for the growth of the European New Space economy; • Be competitive and prevail in a contested and global market; • Attract enough investment to reach the tipping point of commercialization; • Target achieving the first European orbital launch from Continental Europe; • Compete for the EC Horizon Prize on European Low-Cost Space Launch; • Be the first orbital launcher worldwide to use green hybrid rocket propulsion. The project will run for 36 months, with 9 industrial companies from 7 European countries. The total EC contribution is 3 987 416 Euro, and the main outputs of ENVOL are: • A detailed definition of an innovative and industrial low-cost European launch system • A total of four ambitious launch vehicle demonstrators on the turbopump, tank and structures, launcher avionics and payload avionics, advancing the maturity of critical launcher technologies to ensure market readiness and competitiveness. • A business plan grounded by industrial expertise, along with a development plan and the identification of the organization capable to attract investments and to ensure that the work performed in this project transforms into a commercial activity servicing the small satellite launch market in Europe and beyond.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::70ded451790b12dc8570a1b3805ad2ea&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::70ded451790b12dc8570a1b3805ad2ea&type=result"></script>');
-->
</script>
HEMERA will integrate a large Starting Community in the field of tropospheric and stratospheric balloon-borne research, in order to make existing balloon facilities available to all scientific teams in the EU. The project involves major space agencies dealing with balloon infrastructures, companies operating the balloons, companies providing the necessary technology and scientific experts. Balloon borne instruments are suitable for a wide range of science fields, such as atmospheric measurements, climate and environment related investigations, astronomy and astrophysics, space instruments validation and testing of new technologies. The objectives of HEMERA are to: - Provide better and coordinated balloon access to the troposphere and stratosphere for scientific and technological research - Attract new users to enlarge the community accessing the balloon infrastructure - Enlarge the fields of the science and technology research conducted with balloons - Improve the balloon service offered to scientific and technical users - Favour standardisation, synergy, complementarities and industrialisation through joint The infrastructure deals with a wide range of mission characteristics including altitude, flight duration, instrument mass and volume. Flights can be performed during all seasons at various latitudes, satisfying various scientific needs. Currently, the HEMERA programme will use the Zero Pressure Balloons for stratospheric flights (relevant for measuring Essential Climate Variables and for astrophysics), additional types of balloons can be considered. HEMERA will give access to launch bases and is thus capable of conducting scientific balloon campaigns, in Europe and abroad, necessary in particular for scientific issues in the context of climate change. HEMERA includes 3 major components : - Operational activities to organize and conduct the flights - Development of innovative technologies and infrastructure to optimize the balloon offer - Networking
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c5b2f4d2e9b0fd88b7b492acf59a00f4&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c5b2f4d2e9b0fd88b7b492acf59a00f4&type=result"></script>');
-->
</script>
Current launchers (ARIANE6 and VEGA C) will guarantee Europe’s independent access to space for the high-end satellite market. These launchers however are significantly less attractive for classes of smaller satellites. The SMILE initiative therefore addresses reliable, affordable, quick and frequent access to space for the emerging market of small satellites up to 50 kg, fulfilling the needs from the European space RTD community and commercial initiatives to put satellites into preferred orbits within a preferred time window. Herewith a market niche is addressed, which is projected to grow significantly in the coming decades and presently lacks availability of a European launcher. The project focuses on research and innovation to obtain European solutions enabling the development and realization of such a launcher system. Main objectives are to: • develop a concept for an innovative, cost-effective European launcher system for small satellites (target price below 50.000 Euro/kg) • design a Europe-based ground facility for these launcher systems • increase the Technology Readiness Level of several critical technologies required for such a launcher including the development and demonstration of component prototypes • create a roadmap defining the development plan for the launcher system from a technical operational and economical perspective These objectives are achieved through combined research into a novel and innovative launcher system following a multidisciplinary concurrent engineering design and optimization approach. The overall design and development process encompasses technology and process advances aiming at cost reduction, such as series production, re-usability, and the applicability of European industrial grade components. The consortium is composed of organizations in relevant fields from eight European countries, from well-established and experienced SMEs to young and innovative start-ups.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::67c5d155cb6a61d066669628de51573b&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::67c5d155cb6a61d066669628de51573b&type=result"></script>');
-->
</script>