
FLEXIBLE ELEKTRISCHE NETZE FEN GMBH
FLEXIBLE ELEKTRISCHE NETZE FEN GMBH
2 Projects, page 1 of 1
Open Access Mandate for Publications and Research data assignment_turned_in Project2020 - 2024 FLEXIBLE ELEKTRISCHE NETZE FEN GMBH, RWTH, ASM TERNI SPAFunder: EC Project Code: 957788Overall Budget: 8,233,500 EURFunder Contribution: 6,965,520 EURThe project HYPERRIDE (HYbrid Provision of Energy based on Reliabilty and Resiliancy via Integration of Dc Equipment) contributes to the field implementation of DC and hybrid ACDC grids. Starting with the definition of most relevant fields of application for DC grids (local microgrids, grid enforcement to overcome congestions, coupling of AC grid sections, etc.), the enabling technologies will be specified in detail on different levels. Starting from the system perspective, guidelines for grid planning and operation are developed. To optimize invest for the use case dependent use of assets available sizing tools are adapted for the field of DC grids.DC circuit breakers are key technologies for grid protection needed to overcome the main concerns related to these infrastructures. Therefore, HYPERRIDE will raise the TRL of the most promising approaches currently available with a main focus on MVDC breakers. To enable grid automation DC sensors are developed further to provide field ready devices to create data for optimal grid automation. Automation algorithms will be created, validated in a test platform and transferred towards demonstration. This also involves concepts and solutions for cyber security and fault detection. In case of grid faults necessary solutions are developed to prevent cascading effects. For fault prevention databases are created to trigger preventive measures. With demonstrations in three countries (Aachen/Germany, Lausanne/Switzerland, Terni/Italy) the project will showcase relevant and above-mentioned enabling technologies within a wide range of use cases. Benefits of the solutions will be evaluated, especially the integration potential of renewables with respect to conventional AC grids. Finally, business models are created for the products, services and applications in HYPERRIDE.Consequently, HYPERRIDE will actively identify and provide solutions to overcome barriers for a successful roll-out of new infrastructure concepts throughout Europe.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ce37f14f4ce56528fd46fe9925a74898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2016 - 2019 FLEXIBLE ELEKTRISCHE NETZE FEN GMBH, SETU, ERICSSONFunder: EC Project Code: 727481Overall Budget: 4,996,650 EURFunder Contribution: 4,996,650 EURFuture energy systems will use renewable energy sources to minimise CO2 emissions. Currently large generators powered by fossil fuel turbines maintain the stability and quality of energy supplies through their inertia. The inertia of these generator-turbine groups gives providers a significant time window in which to react to network events. We urgently need to find ways to stabilise energy systems with up to 100% RES (where inertia is often lost due to power converter mediated energy transfer) to generate “RE-SERVEs” so that society can relax in the knowledge that it has a stable and sustainable energy supply. RE-SERVE will address this challenge by researching new energy system concepts, implemented as new system support services enabling distributed, multi-level control of the energy system using pan-European unified network connection codes. Near real-time control of the distributed energy network will be enabled by innovative 5G based ICT. Energy system use case scenarios supplied by energy providers will form the basis of energy system models. Performance characteristics of the new control mechanisms will be investigated through integration of energy simulations and live 5G communications. We will create a pan-European multi-site simulation test-bed, bringing together the best facilities in Europe. RE-SERVE results include published models of system support services, innovative architectures for the implementation of the services, performance tests on our pan-European real-time simulation, and live, test-beds, a model for pan-European unified network connection codes and actions to promote results to standardisation organisations, all of which maintain the RE-SERVE in energy systems. Commercialisation of results will result in breakthroughs in the efficient utilisation of use of RES, a spin-off and a wide range of enhanced professional solutions and services.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::75dbc649cd204683e72983d6f7314abb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
