Powered by OpenAIRE graph
Found an issue? Give us feedback

UK Ctr for Ecology & Hydrology fr 011219

UK Ctr for Ecology & Hydrology fr 011219

171 Projects, page 1 of 35
  • Funder: UK Research and Innovation Project Code: NE/V002821/1
    Funder Contribution: 117,714 GBP

    With numerous governments, cities, and organisations declaring climate emergencies and net-zero emissions targets, greenhouse gases (GHGs) are now the focus of international geopolitics and UK domestic policies. Furthermore, with the recent identification of violations of the Montreal Protocol, ozone depleting substances (ODS), are receiving renewed attention. It is therefore critically important to be able to analyse GHG and ODS emissions trends, examine spatial patterns, estimate future trajectories, and explore mitigation options in an open, transparent and publicly accessible way. Our proposed project will enable this, using state-of-the-art computing technology to create a platform, "OpenGHG". The estimation of GHG and ODS emissions requires close collaboration between a diverse group of scientists and stakeholders: "bottom-up" methods rely on statistical information collected by governments and industries, combined with scientific studies of the emissions intensity of particular activities, or the development of computer models that describe how human or natural processes produce or absorb GHGs. Complementary "top-down" techniques rely on instruments developed by spectroscopists and analytical chemists, the data from which are analysed along with outputs from meteorological models using advanced statistical methods. The data that is being generated by these diverse research and stakeholder communities is growing rapidly. However, the development of computational tools to help researchers aggregate data from such a wide range of sources and carry out and share analyses has not kept pace. Furthermore, given the sensitive nature of, for example, the inference of national GHG or ODS emissions, these communities must urgently take steps to make their analyses more transparent and reproducible. OpenGHG meets these needs, by providing an open, cloud-based, platform for researchers to share data and analysis methods and publish workflows. Furthermore, we have co-designed with our stakeholders, a range of tools that will facilitate the sharing of research outputs with governments, private companies and the public. The OpenGHG platform will: - Continuously incorporate and standardise up to date GHG and ODS measurements, bottom-up emission estimates, and a range of ancillary information related to GHG and ODS emissions. This data will be pulled automatically, or on demand, from a range of public archives, or pushed to the platform by data providers seeking to analyse or share their own data - Provide a wide range of analysis options, including the ability to design, publish and share custom workflows - Allow production of new top-down and bottom-up emissions estimates by accessing pre-existing and newly developed models and methods incorporated into the platform - Provide users with lower levels of computational expertise an easy-to-use interface for the most useful data analysis and visualisation. This will include comparisons of top-down and bottom-up estimates of emissions from different sectors of the economy, and potential future warming from different emissions scenarios.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/V001809/1
    Funder Contribution: 137,532 GBP

    Wildlife populations experience a wide range of infections that can both impact on their own health and cross species boundaries to pose environmental risks to farm animal and human health. The impact of this infection will be inextricably linked to a species' movement ecology, as the way in which animal movements around their environment is a major factor in determining how infections are transmitted and persist. Predicting infection dynamics and mitigating their impacts therefore requires understanding how infection influences animal movements and, in turn, understanding the consequences of animal movement for infection dynamics. We will therefore address three key questions in this project: 1) Does infection status influence individual migration strategy? 2) Does infection affect the survival and breeding success of migrants and residents to different extents? 3) Do differences in migratory behaviour scale up to affect levels of infection in host populations. We will investigate these questions in a partially migratory population of seabirds that breed on the Isle of May National Nature Reserve in South East Scotland but migrate along the East Coats of the UK. Recent theoretical studies have modelled three disease related mechanisms that could directly affect selection for, or against, migration. These are 1) migratory escape, whereby migration allows individuals to escape from high-exposure habitats or infected individuals. 2) migratory recovery, whereby infected individuals migrate to a different area to gain resources that facilitate recovery 3) migratory culling, whereby infected individuals suffer higher mortality during migration. We will firstly test whether natural levels of parasitism are associated with individual migration strategy expressed in an individual's first year of life and whether measures of immunity differ in juveniles that subsequently become resident or migrant. We will then experimentally test whether parasitism has a causal role through experimental reduction of parasite burden. We will then test whether parasitism is associated with differences in breeding success and survival of migrants and residents. We will use multi-year demographic data to link individual migration strategy to levels of parasitism and components of fitness to test a) whether parasitism is associated with any potential selective advantage of migration and b) the demographic routes through which this may operate. Finally we will test whether changes in population levels of parasitism between years is due to decreases in individual parasite burden as individuals recover from infection or the loss of infected hosts from the population as they fail to survive. This is important from a management or conservation point of view as these alternative explanations would lead to very different conclusions about the robustness of the population to infection. This study will therefore provide first combined test of how parasitism drives migratory movements in a partially migratory species with measuring the consequences for population level changes in parasite abundance and whether these result from high levels of host mortality. These are key to assessing the impact of migration on parasite persistence in the environment and the impact of parasitism on different components of animal populations.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X526435/1
    Funder Contribution: 167,427 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X528432/1
    Funder Contribution: 50,000 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V520846/1
    Funder Contribution: 466,948 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.