The proposal develops a combination of energy-saving solutions that can be adopted in retrofitting aimed at achieving the 35% of GHG emissions. Two new technologies, i.e. wind assisted ship propulsion and an innovative air lubrication system, will be developed together with other solutions that, although based on already mature technologies, such as operational and hydrodynamic design optimization and ship electrification, have to be expanded to be integrated with the new solutions as well as to cope with the constraints posed by the original ship design. The final objective of RETROFIT55 is to create an advanced web-based Decision Support System (DSS), that fuses together digital twins of the different systems into an integrated digital ship model. The DSS will feature a catalogue of retrofitting solutions that are up-to-date and ready to be deployed at the end of the project and easily extendable afterward while developed and demonstrated at TRL 7-8, suitable for different ship types and operational contexts. The DSS will enable the user to configure the retrofitting by combining different options which are suitable for the specific ship type and comparing them in terms of life-cycle cost, return-of-investment and several KPIs, such as EEXI, CII. Referring to the ZEWT strategy, while primarily contributing to the Design and Retrofit, the implementation of the project will also intersect other topics, such as Use of Sustainable Alternative fuels, Energy Efficiency, Electrification and Digital Green. The consortium brings together universities and research institutions, three developers of the new technologies, a ship design office, software developers, ICT experts, a classification society, a ship-repair company, and two large ship operators.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::69db76d99d861b3470c253c534045ac0&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::69db76d99d861b3470c253c534045ac0&type=result"></script>');
-->
</script>
Most maritime products are typically associated with large investments and are seldom built in large series. Where other modes of transport benefit from the economy of series production, this is not the case for maritime products which are typically designed to refined customer requirements increasingly determined by the need for high efficiency, flexibility and low environmental impact at a competitive price. Product design is thus subject to global trade-offs among traditional constraints (customer needs, technical requirements, cost) and new requirements (life-cycle, environmental impact, rules). One of the most important design objectives is to minimise total cost over the economic life cycle of the product, taking into account maintenance, refitting, renewal, manning, recycling, environmental footprint, etc. The trade-off among all these requirements must be assessed and evaluated in the first steps of the design process on the basis of customer / owner specifications. Advanced product design needs to adapt to profound, sometimes contradicting requirements and assure a flexible and optimised performance over the entire life-cycle for varying operational conditions. This calls for greatly improved design tools including multi-objective optimisation and finally virtual testing of the overall design and its components. HOLISHIP (HOLIstic optimisation of SHIP design and operation for life-cycle) addresses these urgent industry needs by the development of innovative design methodologies, integrating design requirements (technical constraints, performance indicators, life-cycle cost, environmental impact) at an early design stage and for the entire life-cycle in an integrated design environment. Design integration will be implemented in practice by the development of integrated design s/w platforms and demonstrated by digital mock-ups and industry led application studies on the design and performance of ships, marine equipment and maritime assets in general.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::1a5ff37d09cd9ab3a666c6c162d19eaf&type=result"></script>');
-->
</script>
views | 1,064 | |
downloads | 2,488 |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::1a5ff37d09cd9ab3a666c6c162d19eaf&type=result"></script>');
-->
</script>