The recent experience with ocean wave energy have revealed issues with reliability of technical components, survivability, high development costs and risks, long time to market, as well as industrial scalability of proposed and tested technologies. However the potential of wave energy is vast, and also positive conclusions have been drawn, in particular that wave energy is generally technically feasible. Having substantial insight into successes and drawbacks in past developments and existing concepts, the promoters have identified ‘breakthrough features’ that address the above mentioned obstacles, i.e. components, systems and processes, as well as the respective IP. These breakthroughs are applied to two wave concepts, the OWC and the Symphony, under development by members of the consortium. The following main avenues have been identified: 1. Survivability breakthrough via device submergence under storm conditions; 2. O&M (operation and maintenance) breakthrough via continuous submergence and adaption of components and strategies; 3. PTO breakthrough via dielectric membrane alternatives to the “classical” electro-mechanical power take-off equipment; 4. Array breakthrough via sharing of mooring and electrical connections between nearby devices, as well as integral approach to device interaction and compact aggregates; WETFEET addressees Low-carbon Energies specific challenges by targeting a set of breakthroughs for wave energy technology, an infant clean energy technology with vast potential. The breakthrough features of WETFEET are developed and tested on the platform of two specific converter types (OWC and Symphony) with near-term commercial interest, and a large part of the results can make a general contribution to the sector, being implemented in other technologies.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::66ff0465805ca377d5bbc96fe1dfd7f3&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::66ff0465805ca377d5bbc96fe1dfd7f3&type=result"></script>');
-->
</script>
MOSES aims to significantly enhance the SSS component MOSES aims to significantly enhance the SSS component of the European container supply chain by addressing the vulnerabilities and strains that relate to the operation of large containerships. MOSES will follow a two-fold strategy for reducing the total time to berth for TEN-T Hub Ports and stimulating the use of SSS feeder services to small ports (hub and spoke traffic) that have limited or no infrastructure. MOSES will achieve its objectives by implementing the following innovations: (i) For the SSS leg, an innovative, hybrid electric feeder vessel designed to match dominant SSS business cases that will increase the utilization rate of small ports. The feeder will be outfitted with a robotic container-handling system that is self-sufficient in terms of (un)loading containerised cargo and will simplify the process at the Hub Ports while improving the operational capacity of small ports; (ii) For DSS ports, the adoption of an autonomous vessel manoeuvring and docking scheme (MOSES AutoDock) that will provide operational independency from the availability of port services. This scheme will be based on the cooperation of (a) a swarm of autonomous tugboats that automates manoeuvring with (b) an automated docking system based on an existing product; (iii) A digital collaboration and matchmaking platform (MOSES platform) aiming to match demand and supply of cargo volumes by logistics stakeholders using Machine Learning (ML) and data driven-based analysis to maximize SSS traffic. MOSES will be validated by pilot demonstrations in relevant testing environments (TRL5), supported by concrete business cases. A sustainability framework will be developed within the project for evaluating the performance and viability of the proposed innovations with sustainability criteria and benchmarking them against alternative transportation modes. This evaluation will also lead to concrete policy recommendations regarding SSS in Europe.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::206018c1391211eec14369a1395c983b&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::206018c1391211eec14369a1395c983b&type=result"></script>');
-->
</script>
Estimates indicate that the value of unexploited European mineral resources at a depth of 500-1,000 metres is ca €100 billion, however, a number of physical, economic, social, environmental and human constraints have as yet limited their exploitation. ¡VAMOS! will provide a new Safe, Clean and Low Visibility Mining Technique and will prove its Economic Viability for extracting currently unreachable mineral deposits, thus encouraging investment and helping to put the EU back on a level playing field in terms of access to strategically important minerals. Deriving from successful deep-sea mining techniques, the ¡VAMOS! mining solution aspires to lead to: Re-opening abandoned mines; Extensions of opencut mines which are limited by stripping ratio, hydrological or geotechnical problems; and opening of new mines in the EU. ¡VAMOS! will design and manufacture innovative automated excavation equipment and environmental impact monitoring tools that will be used to perform field tests in a number of mine sites across Europe with a range of rock hardness and pit morphology. VAMOS will: 1.Develop a prototype underwater, remotely controlled, mining machine with associated launch and recovery equipment 2.Enhance currently available underwater sensing, spatial awareness, navigational and positioning technology 3.Provide an integrated solution for efficient Real-time Monitoring of Environmental Impact 4.Conduct field trials with the prototype equipment in abandoned and inactive mine sites with a range of rock types and at a range of submerged depths 5.Evaluate the productivity and and cost of operation to enable mine-ability and economic reassessment of the EU's mineral resources. 6. Maximize impact and enable the Market Up-Take of the proposed solutions by defining and overcoming the practicalities of the concept, proving the operational feasibility and the economic viability. 7. Contribute to the social acceptance of the new extraction technique via public demonstrations in EU regions.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::06eb94f0fc43e3ff7c1c5c6d449becad&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::06eb94f0fc43e3ff7c1c5c6d449becad&type=result"></script>');
-->
</script>