HYLENA-Hop On will investigate and mature (TRL2 to TRL3) an electrical power distribution solution supporting the development of an innovative, highly efficient, hydrogen powered electrical aircraft propulsion concept being developed in HYLENA. This concept is based on the integration of Solid Oxide Fuel Cells (SOFC) with turbomachinery in order to use both the electric and thermal energy for improved propulsive efficiency. HYLENA-Hop On sets out to overcome both the known and unknown technical challenges associated with electrical power distribution, protection and coordination, as well as the integration of the electrical motor and Motor Control Unit by focusing on the following key aspects: • Power Distribution Unit (PDU) concept including latest technologies. • Electric Motor and Motor Control Unit design studies and possible development directions targeting improved efficiency of the novel HYLENA hybrid propulsion architecture. • Innovative resilient and coordinated power management strategies. • Reliability assessment framework for electrical power distribution systems applicable to hybrid aircraft propulsion architectures including SOFC. This complementary work will accelerate the availability of an electrical power distribution solution bringing HYLENA one step closer to ground demonstration phase and thereby supporting HYLENA’s path towards climate neutral aviation. EATON’s participation in the HYLENA project will not only introduce a new dimension of expertise complementing HYLENA’s objectives, but will also reinforce the project’s outreach. It will enhance EATON’s visibility and knowledge on EU funded collaborations. Moreover, it will create the opportunity to break up existing silos, to enhance the development of new networks and to increase the permeability for talents between Czech and European organisations which are well established in the European funding landscape, thereby strengthening a pan-European innovation ecosystem.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::bc5c60107915f53e50d7597efd5e9d24&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::bc5c60107915f53e50d7597efd5e9d24&type=result"></script>');
-->
</script>
Low Voltage DC power systems are one of the most promising technologies for a clean and efficient energy transition, especially for local generation and storage. However, safety considerations prevent rapid adoption of the proposed solutions. Our project aims at developing new current limiting (CL) technology, based on high-mobility materials and the extraordinary magnetoresistance (EMR) effect, as well as their integration into Direct Current (DC)-and hybrid AC/DC microgrid infrastructures. A system design approach will be adopted to find device layouts suitable for five selected use-cases: native DC-supply loads, battery systems, photovoltaic, microgrids and bidirectional EV Supply Equipment (EVSE) to enable the V2X (focus on V2G) technology deployment. The devices are fabricated and tested for proof of concept. The potential of this technology is further evaluated by simulation means aiming at standardization, and the development of DC- and hybrid microgrids steady state operation strategies. The proposed research results in passive, multifunctional, more robust, and safer CL devices for DC applications, with reduced cost, size, and environmental footprint, when compared to the state-of-the-art. Our technology can be a breakthrough for circuit protection, aiming at demonstrating through end-to-end, design-to-application innovation (design supported by LCA guidance, simulation, fabrication, and lab-based testing) that a comprehensive, advanced solution encompassing EMR-enabled current limiting devices, can meet the current needs of the DC microgrid market. It can establish European industrial leadership with a technology that is critical for the on-going energy transition which makes it a suitable goal for the European Green Deal.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::0826209ebb009dd4684a091a99ba6e88&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::0826209ebb009dd4684a091a99ba6e88&type=result"></script>');
-->
</script>
HEROPS aims to introduce climate-neutral propulsion into regional aircraft by developing MTU’s Flying Fuel Cell (FFC) propulsion system concept for entry into service in 2035. This disruptive hydrogen-electric propulsion system uses fuel cells as sole power source and a liquid hydrogen fuel system, without the need for high-power batteries. Integration of both the fuel cell system and the electric propulsion unit into a compact engine nacelle will ensure an efficient system at high power-to-weight ratio. HEROPS targets to demonstrate a 1,2 MW propulsion system based on a scalable 600 kW core module at TRL4. The core module and all further sub-systems will be validated up to TRL5. Complemented by simulation and electrical network testing of the overall modularised system, scalability to the 2 – 4 MW power level will be confirmed. The certification programme will build upon on-going certification activities, enabling timely maturation of the aviation-native HEROPS technology against relevant certification requirements. The two-phase approach of the overall programme - including extensive development, test and validation cycles at each stage - is expected to advance the FFC concept to TRL6 for integration and demonstration on a regional aircraft by 2028. It will pave the way for commercial prototyping and entry-into-service by 2035, delivering a key propulsion technology to reach the European Green Deal’s objective of climate-neutral aviation by 2050 with 100% prevention of CO2 and NOx emissions and up to 80% reduction of the climate impact from contrails and contrail cirrus. The HEROPS project will meet this challenge with a European consortium of aircraft propulsion system integrators, electrical system experts, key tier 1 suppliers and leading researchers in stack technology, mechanics and propulsion, leveraging relevant and effective synergies between European and national programmes.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::8d7a4d7bf09a190cec57d6a8ce0f68a1&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::8d7a4d7bf09a190cec57d6a8ce0f68a1&type=result"></script>');
-->
</script>
ENLIGHTEN aims at developing, integrating and testing a next generation post 800V electric vehicle powertrain with an indicative voltage level of 1200V. It targets a higher performing, cost optimized and more sustainable drivetrain layout that is also backwards compatible to the existing charging infrastructure with 1000V or 500V respectively. Determining exactly how high the new voltage level should be, to enable expected advantages in a systemic and systematic way is also part of the project. A new voltage level affects the entire sphere of electric mobility, both horizontally (vehicle, charging infrastructure, users, manufacturers) and vertically (OEM, tier1, tier2, single component supplier), hence a deliberate decision is required. To accomplish this an advanced electrical system architecture is presented by the ENLIGHTEN consortium in this proposal on whose basis a specific electric vehicle drivetrain will finally be developed and demonstrated in a C-segment vehicle. The at TRL5 delivered powertrain will consist of a dual voltage battery system and an integrated motor-inverter E-drive system, complemented by an intermediate DCDC converter, an AC and DC capable onboard charger and a power distribution. All power electronic devices will exploit low loss, ultra-fast switching gallium nitride (GaN) semiconductors for highest efficiency and to minimize cooling demand and component size. The dual voltage battery can be switched dynamically from one battery voltage into the other while driving. Through these and other measures, the ENLIGHTEN system delivers significant advances over the 2024 State of the Art. The ENLIGHTEN consortium includes 2 automotive companies, 1 Tier1 supplier and 2 SMEs. Their expertise is leveraged by the partnership with 2 research institutions and 4 academia/universities, constituting an ideal setup for strengthening the competitiveness of the European automotive industry.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::f97199d76f910385963d5f814a30fc89&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::f97199d76f910385963d5f814a30fc89&type=result"></script>');
-->
</script>
The project HYPERRIDE (HYbrid Provision of Energy based on Reliabilty and Resiliancy via Integration of Dc Equipment) contributes to the field implementation of DC and hybrid ACDC grids. Starting with the definition of most relevant fields of application for DC grids (local microgrids, grid enforcement to overcome congestions, coupling of AC grid sections, etc.), the enabling technologies will be specified in detail on different levels. Starting from the system perspective, guidelines for grid planning and operation are developed. To optimize invest for the use case dependent use of assets available sizing tools are adapted for the field of DC grids.DC circuit breakers are key technologies for grid protection needed to overcome the main concerns related to these infrastructures. Therefore, HYPERRIDE will raise the TRL of the most promising approaches currently available with a main focus on MVDC breakers. To enable grid automation DC sensors are developed further to provide field ready devices to create data for optimal grid automation. Automation algorithms will be created, validated in a test platform and transferred towards demonstration. This also involves concepts and solutions for cyber security and fault detection. In case of grid faults necessary solutions are developed to prevent cascading effects. For fault prevention databases are created to trigger preventive measures. With demonstrations in three countries (Aachen/Germany, Lausanne/Switzerland, Terni/Italy) the project will showcase relevant and above-mentioned enabling technologies within a wide range of use cases. Benefits of the solutions will be evaluated, especially the integration potential of renewables with respect to conventional AC grids. Finally, business models are created for the products, services and applications in HYPERRIDE.Consequently, HYPERRIDE will actively identify and provide solutions to overcome barriers for a successful roll-out of new infrastructure concepts throughout Europe.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ce37f14f4ce56528fd46fe9925a74898&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ce37f14f4ce56528fd46fe9925a74898&type=result"></script>');
-->
</script>