HEROPS aims to introduce climate-neutral propulsion into regional aircraft by developing MTU’s Flying Fuel Cell (FFC) propulsion system concept for entry into service in 2035. This disruptive hydrogen-electric propulsion system uses fuel cells as sole power source and a liquid hydrogen fuel system, without the need for high-power batteries. Integration of both the fuel cell system and the electric propulsion unit into a compact engine nacelle will ensure an efficient system at high power-to-weight ratio. HEROPS targets to demonstrate a 1,2 MW propulsion system based on a scalable 600 kW core module at TRL4. The core module and all further sub-systems will be validated up to TRL5. Complemented by simulation and electrical network testing of the overall modularised system, scalability to the 2 – 4 MW power level will be confirmed. The certification programme will build upon on-going certification activities, enabling timely maturation of the aviation-native HEROPS technology against relevant certification requirements. The two-phase approach of the overall programme - including extensive development, test and validation cycles at each stage - is expected to advance the FFC concept to TRL6 for integration and demonstration on a regional aircraft by 2028. It will pave the way for commercial prototyping and entry-into-service by 2035, delivering a key propulsion technology to reach the European Green Deal’s objective of climate-neutral aviation by 2050 with 100% prevention of CO2 and NOx emissions and up to 80% reduction of the climate impact from contrails and contrail cirrus. The HEROPS project will meet this challenge with a European consortium of aircraft propulsion system integrators, electrical system experts, key tier 1 suppliers and leading researchers in stack technology, mechanics and propulsion, leveraging relevant and effective synergies between European and national programmes.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::8d7a4d7bf09a190cec57d6a8ce0f68a1&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::8d7a4d7bf09a190cec57d6a8ce0f68a1&type=result"></script>');
-->
</script>
The project HYPERRIDE (HYbrid Provision of Energy based on Reliabilty and Resiliancy via Integration of Dc Equipment) contributes to the field implementation of DC and hybrid ACDC grids. Starting with the definition of most relevant fields of application for DC grids (local microgrids, grid enforcement to overcome congestions, coupling of AC grid sections, etc.), the enabling technologies will be specified in detail on different levels. Starting from the system perspective, guidelines for grid planning and operation are developed. To optimize invest for the use case dependent use of assets available sizing tools are adapted for the field of DC grids.DC circuit breakers are key technologies for grid protection needed to overcome the main concerns related to these infrastructures. Therefore, HYPERRIDE will raise the TRL of the most promising approaches currently available with a main focus on MVDC breakers. To enable grid automation DC sensors are developed further to provide field ready devices to create data for optimal grid automation. Automation algorithms will be created, validated in a test platform and transferred towards demonstration. This also involves concepts and solutions for cyber security and fault detection. In case of grid faults necessary solutions are developed to prevent cascading effects. For fault prevention databases are created to trigger preventive measures. With demonstrations in three countries (Aachen/Germany, Lausanne/Switzerland, Terni/Italy) the project will showcase relevant and above-mentioned enabling technologies within a wide range of use cases. Benefits of the solutions will be evaluated, especially the integration potential of renewables with respect to conventional AC grids. Finally, business models are created for the products, services and applications in HYPERRIDE.Consequently, HYPERRIDE will actively identify and provide solutions to overcome barriers for a successful roll-out of new infrastructure concepts throughout Europe.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ce37f14f4ce56528fd46fe9925a74898&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ce37f14f4ce56528fd46fe9925a74898&type=result"></script>');
-->
</script>
Batteries have been identified as an important technology to guide the clean-energy transition. Its presence in the automotive and energy storage industry is well-established and forecasts show its incoming market uptake. However, the current BMS of FLBs lack interoperability features, resulting in a time-consuming, expensive, and non-standardized reconfiguration process for SLB adaptation. These drawbacks complicate FLB repurposing for SLB applications, like ESS. The BIG LEAP project focuses on developing solutions for the SLBs BMS and its reconfiguration process. Technology breakthroughs will be made in its BMS, as a new three-layer architecture will be designed to ensure interoperability, safety, and reliability. It will be complemented with an adaptable ESS design to ensure BMS integration and expand the SLB's potential applications. Additionally, the BIG LEAP project intends to optimize the battery reconfiguration process by making it cost-effective, faster, and standardized. The methodology for the development of these innovations includes the collection of EV, maritime E-Vessel, and ESS batteries that will be dismantled and the data collected will serve as the basis for the BMS architecture development. It will contain adaptable SoX algorithms for accurate battery measurement, a DT for real-time monitoring, and a standardization roadmap. The new BMS will be integrated into the batteries, alongside the ESS and will be tested in three demo sites. Two physical demos will be in Paris and Prague, and a virtual demo will be in Morocco. They aim to validate the novel BMS and ESS, proving their optimization and interoperability. The BIG LEAP innovation includes a multidisciplinary consortium, a strong business case, and an Environmental Impact assessment. All with the intention of accelerating its market uptake with a cost-effective solution, positively impacting the European economy through the battery value chain and tracing its sustainable benefits.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e613eb452104d7672c27a3cdb273098d&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e613eb452104d7672c27a3cdb273098d&type=result"></script>');
-->
</script>
FLOW boosts and demonstrates multifaceted EV smart charging and V2X integration into energy systems thanks to a range of comprehensive solutions providing answers to the needs of all actors involved. These solutions include highly replicable user-centric products, concepts, configurations and mechanisms to optimise operation. Cross-sector harmonisation and standardisation is delivered to facilitate activities of stakeholders and EV users. Advanced interoperable solutions enhance planning, operation and assessment of EV charging for seamless integration into the energy system and identification of the most appropriate scenario based on a multi-criteria model, leveraging appropriate business models and tailored services. FLOW also delivers multi-actor orchestration to ensure data exchange and synchronisation across actors for VGI and EV flexibility services. These solutions are deployed in 5 demonstrations (including 2 testbeds and 3 large-scale demos) in CZ, IE, IT, DK, and ES covering a wide range of applications (e.g., V1G/V2B/V2H/V2G, public/private/semi-public, urban/rural/touristic, car/small- & medium commercial) to validate and quantify the benefits associated with enabling and valorising EV flexibility, alleviating grid challenges, and fostering mobility and energy decarbonization. Expected impacts include GHG emission reduction of 0.6MtCO2/y, grid reinforcement saving up to 1.3B€/country, increase local RES by 14% and avoid RES curtailment by 4TWh. The consortium includes 26 partners from 9 European countries covering the entire value chain, including OEM, technology providers, CPOs, aggregators, DSOs, TSO, ICT developers, RTOs experts in users, mobility, harmonisation, optimisation tools, energy integration and leveraging the networks of umbrella associations from the electromobility and the DSOs. These ensure replicability and scalability to foster the EV penetration trends, thanks also to comprehensive communication, dissemination and exploitation actions
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::5925f8a47adaf2d059fd6b4774c23b7b&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::5925f8a47adaf2d059fd6b4774c23b7b&type=result"></script>');
-->
</script>
In the long haul transport sector, the reduction of real driving emissions and fuel consumption is the main societal challenge. The LONGRUN project will contribute to lower the impacts by developing different engines, drivelines and demonstrator vehicles with 10% energy saving (TtW) and related CO2, 30% lower emission exhaust (NOx, CO and others), and 50% Peak Thermal Efficiency. A second achievement will be the multiscale simulation framework to support the design and development of efficient powertrains, including hybrids for both trucks and coaches. With the proposed initiatives a leading position in hybrid powertrain technology and Internal Combustion Engine operating on renewable fuels in Europe will be guaranteed. A single solution is not enough to achieve these targets. The LONGRUN project brings together leading OEMs of trucks and coaches and their suppliers and research partners, to develop a set of innovations and applications, and to publish major roadmaps for technology and fuels in time for the revision of the CO2 emission standards for heavy duty vehicles in 2022 to support decision making with most recent and validated results and to make recommendations for future policies. The OEMs will develop 8 demonstrators (3 engines, 1 hybrid drivelines, 2 coaches and 3 trucks); within them technical sub-systems and components will be demonstrated, including electro-hybrid drives, optimised ICEs and aftertreatment systems for alternative and renewable fuels, electric motors, smart auxiliaries, on-board energy recuperation and storage devices and power electronics. This includes concepts for connected and digitalised fleet management, predictive maintenance and operation in relation to electrification where appropriate to maximise the emissions reduction potential. The 30 partners will accelerate the transition from fossil-based fuels to alternative and renewable fuels and to a strong reduction of fossil-based CO2 and air pollutant emissions in Europe
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::29ec652b02c87220e65d289ac84277ee&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::29ec652b02c87220e65d289ac84277ee&type=result"></script>');
-->
</script>