
This proposal is for a new EPSRC Centre for Doctoral Training in Wind and Marine Energy Systems and Structures (CDT-WAMSS) which joins together two successful EPSRC CDTs, their industrial partners and strong track records of training more than 130 researchers to date in offshore renewable energy (ORE). The new CDT will create a comprehensive, world-leading centre covering all aspects of wind and marine renewable energy, both above and below the water. It will produce highly skilled industry-ready engineers with multidisciplinary expertise, deep specialist knowledge and a broad understanding of pertinent whole-energy systems. Our graduates will be future leaders in industry and academia world-wide, driving development of the ORE sector, helping to deliver the Government's carbon reduction targets for 2050 and ensuring that the UK remains at the forefront of this vitally important sector. In order to prepare students for the sector in which they will work, CDT-WAMSS will look to the future and focus on areas that will be relevant from 2023 onwards, which are not necessarily the issues of the past and present. For this reason, the scope of CDT-WAMSS will, in addition to in-stilling a solid understanding of wind and marine energy technologies and engineering, have a particular emphasis on: safety and safe systems, emerging advanced power and control technologies, floating substructures, novel foundation and anchoring systems, materials and structural integrity, remote monitoring and inspection including autonomous intervention, all within a cost competitive and environmentally sensitive context. The proposed new EPSRC CDT in Wind and Marine Energy Systems and Structures will provide an unrivalled Offshore Renewable Energy training environment supporting 70 students over five cohorts on a four-year doctorate, with a critical mass of over 100 academic supervisors of internationally recognised research excellence in ORE. The distinct and flexible cohort approach to training, with professional engineering peer-to-peer learning both within and across cohorts, will provide students with opportunities to benefit from such support throughout their doctorate, not just in the first year. An exceptionally strong industrial participation through funding a large number of studentships and provision of advice and contributions to the training programme will ensure that the training and research is relevant and will have a direct impact on the delivery of the UK's carbon reduction targets, allowing the country to retain its world-leading position in this enormously exciting and important sector.
Wave and tidal energy devices are subjected to normal everyday loadings and abnormal extreme loadings. Extreme loadings are severe and less frequent. The repetitive loadings arising from wave-device interaction or current-blade-structure interaction are lower and occur very frequently in normal operation. Economic designs that will survive have to withstand, without structural failure, a combination of these types of loading over the design life of the device and its subsystems. Cumulative fatigue damage in the wave or turbulent-current environment could occur earlier than anticipated in the life of wave or tidal current technologies and needs to be better understood to predict wear-out or failure and ensure designs are robust without entailing excessive cost. This work will explore numerically through computer modelling, and physically through preliminary model- and sea-testing, the interaction of tidal and wave devices with their sea that surrounds them, one another, their moorings and the electricity network to understand the cyclic and irregular forces acting and the structural loadings arising, ultimately aiming to reduce fatigue effects and increase reliability.
The UK is leading the development and installation of offshore renewable energy technologies. With over 13GW of installed offshore wind capacity and another 3GW under construction, two operational and one awarded floating offshore demonstration projects as well as Contracts for Difference awards for four tidal energy projects, offshore renewable energy will provide the backbone of the Net Zero energy system, giving energy security, green growth and jobs in the UK. The revised UK targets that underpin the Energy Security Strategy seek to grow offshore wind capacity to 50 GW, with up to 5 GW floating offshore wind by 2030. Further acceleration is envisaged beyond 2030 with targets of around 150 GW anticipated for 2050. To achieve these levels of deployment, ORE developments need to move beyond current sites to more challenging locations in deeper water, further from shore, while the increasing pace of deployment introduces major challenges in consenting, manufacture and installation. These are ambitious targets that will require strategic innovation and research to achieve the necessary technology acceleration while ensuring environmental sustainability and societal acceptance. The role of the Supergen ORE Hub 2023 builds on the academic and scientific networks, traction with industry and policymakers and the reputation for research leadership established in the Supergen ORE Hub 2018. The new hub will utilise existing and planned research outcomes to accelerate the technology development, collaboration and industry uptake for commercial ORE developments. The Supergen ORE Hub strategy will focus on delivering impact and knowledge transfer, underpinned by excellent research, for the benefit of the wider sector, providing research and development for the economic and social benefit of the UK. Four mechanisms for leverage are envisaged to accelerate the ORE expansion: Streamlining ORE projects, by accelerating planning, consenting and build out timescales; upscaling the ORE workforce, increasing the scale and efficiency of ORE devices and system; enhanced competitiveness, maximising ORE local content and ORE economic viability in the energy portfolio; whilst ensuring sustainability, yielding positive environmental and social benefits from ORE. The research programme is built around five strategic workstreams, i) ORE expansion - policy and scenarios , ii) Data for ORE design and decision-making, iii) ORE modelling, iv) ORE design methods and v) Future ORE systems and concepts, which will be delivered through a combination of core research to tackle sector wide challenges in a holistic and synergistic manner, strategic projects to address emerging sector challenges and flexible funding to deliver targeted projects addressing focussed opportunities. Supergen Representative Systems will be established as a vehicle for academic and industry community engagement to provide comparative reference cases for assessing applicability of modelling tools and approaches, emerging technology and data processing techniques. The Supergen ORE Hub outputs, research findings and sector progress will be communicated through directed networking, engagement and dissemination activities for the range of academic, industry and policy and governmental stakeholders, as well as the wider public. Industry leverage will be achieved through new co-funding mechanisms, including industry-funded flexible funding calls, direct investment into research activities and the industry-funded secondment of researchers, with >53% industry plus >23% HEI leverage on the EPSRC investment at proposal stage. The Hub will continue and expand its role in developing and sustaining the pipeline of talent flowing into research and industry by integrating its ECR programme with Early Career Industrialists and by enhancing its programme of EDI activities to help deliver greater diversity within the sector and to promote ORE as a rewarding and accessible career for all.
The Government's commitment to increasing offshore and marine renewable energy generation presents significant technological challenges in designing, commissioning and building the infrastructure, connecting offshore generation to onshore usage, and considering where these new developments are best placed, whilst balancing the impact they have upon the environment. In tandem, this commitment presents opportunities to advance UK capabilities in cutting-edge engineering and technologies in pursuit of net zero. Liverpool is home to one of the largest concentrations of offshore wind turbines globally in Liverpool Bay, the second largest tidal range in the UK, some of the largest names of maritime engineering alongside numerous SMEs, and the Port of Liverpool, a Freeport and Investment Zone status. The latest Science and Innovation Audit (2022) highlights Net Zero and Maritime as an emerging regional capability, and is an area in which the Liverpool City Region Combined Authority has stated its ambition to grow an innovation cluster. The University of Liverpool and Liverpool John Moores University each host world-class research expertise, environments and facilities relevant to addressing these maritime energy challenges, and have an established, shared track record in collaboration with industrial and civic partners. The Centre for Doctoral Training in Net Zero Maritime Energy Solutions (N0MES CDT) will play a vital role in filling critical skills gaps by delivering 52 highly trained researchers (PGRs), skilled in the identification, understanding, assessment, and solutions-delivery of pressing challenges in maritime energy. N0MES PGRs will pursue new, engineering-centred, interdisciplinary research to address four vital net zero challenges currently facing the North West, the UK and beyond: (a) Energy generation using maritime-based renewable energy (e.g. offshore wind, tidal, wave, floating solar, hydrogen, CCS) (b) Distributing energy from offshore to onshore, including port- and hinterland-side impacts and opportunities (c) Addressing the short- and long-term environmental impacts of offshore and maritime environment renewable energy generation, distribution and storage (d) Decommissioning and lifetime extension of existing energy and facilities The N0MES CDT will empower its graduates to communicate, research and innovate across disciplines, and will develop flexible leaders who can move between projects and disciplines as employer priorities and scientific imperatives evolve.
Ambitious plans for the large-scale deployment of wave and tidal energy are underway to meet carbon reduction targets, with the deployment of 1.6GW of generation planned for the Pentland Firth and Orkney Waters (PFOW), and smaller deployments planned off the coast of Wales and Isle of Wight. In parallel, numerous wave and tidal energy technologies are under development by companies ranging from small embryonic SMEs to multinational engineering companies, whilst test sites, including the European Marine Energy Centre (EMEC) have been established, seabed leases awarded by the Crown Estate, and the deployment of the first, small scale, arrays of devices underway. Amongst this race to develop technology and sites, concerns regarding potential interactions between wave and tidal energy devices/developments and marine mammals, seabirds and fish have emerged. These have formed the basis for the NERC/Defra Understanding How Marine Renewable Device Operations Influences Fine Scale Habitat Use and Behaviour of Marine Vertebrates (RESPONSE) (NE/J004251/1; NE/J000884/1). The study has provided new multi-disciplinary perspectives of the issue, from field studies investigating potential interactions, to the risk management challenges it poses across the wave and tidal sector. The project will directly address the challenges associated with potential marine vertebrate interactions by translating the new emerging evidence and lessons learned from the RESPONSE, FLOWBEC and MREKEP risk and uncertainty study, to inform decision-making on this potentially significant risk to the development of the wave and tidal energy sector. Through direct engagement with a community of stakeholders, incorporating device and site developers, regulators, advisory bodies, NGOs and industry associations, the embedding of this evidence in site scoping, technology design, monitoring, mitigation and consenting processes will be a practical outcome of this work.