
Methane is a powerful long-lived greenhouse gas that is second only to carbon dioxide in its radiative forcing potential. Understanding the Earth's methane cycle at regional scales is a necessary step for evaluating the effectiveness of methane emission reduction schemes, detecting changes in biological sources and sinks of methane that are influenced by climate, and predicting and perhaps mitigating future methane emissions. The growth rate of atmospheric methane has slowed since the 1990s but it continues to show considerable year-to-year variability that cannot be adequately explained. Some of the variability is caused by the influence of weather on systems in which methane is produced biologically. When an anomalous increase in atmospheric methane is detected in the northern hemisphere that links to warm weather conditions, typically wetlands and peatlands are thought to be the cause. However, small lakes and ponds commonly are overlooked as potential major sources of methane emissions. Lakes historically have been regarded as minor emitters of methane because diffusive fluxes during summer months are negligible. This notion has persisted until recently even though measurements beginning in the 1990s have consistently shown that significant amounts of methane are emitted from northern lakes during spring and autumn. In the winter time the ice cover isolates lake water from the atmosphere and the water column become poor in oxygen and stratified. Methane production increases in bottom sediment and the gas spreads through the water column with some methane-rich bubbles rising upwards and becoming trapped in the ice cover as it thickens downward in late winter. In spring when the ice melts the gas is released. Through changes in temperature and the influence of wind the lake water column mixes and deeper accumulations of methane are lost to the atmosphere. In summer the water column stratifies again and methane accumulates once more in the bottom sediments. When the water column become thermally unstable in the autumn and eventually overturns the deep methane is once again released although a greater proportion of it appears to be consumed by bacteria in the autumn. Lakes differ in the chemistry of their water as well as the geometry of their basins. Thus it is difficult to be certain that all lakes will behave in this way but for many it seems likely. The proposed study will measure the build-up of methane in lakes during spring and autumn across a range of ecological zones in North America. The focus will be on spring build-up and emissions because that gas is the least likely to be influenced by methane-consuming bacteria. However, detailed measurements of methane emissions will also be made in the autumn at a subset of lakes. The measurements will then be scaled to a regional level using remote sensing data providing a 'bottom-up' estimate of spring and autumn methane fluxes. Those results will be compared to a 'top-down' estimate determined using a Met Office dispersion model that back-calculates the path of air masses for which the concentration of atmospheric methane has been measured at global monitoring stations in order to determine how much methane had to be added to the air during its passage through a region. Comparing estimates by these two approaches will provide independent assessments of the potential impact of seasonal methane fluxes from northern lakes. In addition measurements of the light and heavy versions of carbon and hydrogen atoms in methane (C, H) and water (H) will be measured to evaluate their potential use as tracer for uniquely identifying methane released by lakes at different latitudes. If successful the proposed study has the potential to yield a step-change in our perception of the methane cycle by demonstrating conclusively that a second major weather-sensitive source of biological methane contributes to year-to-year shifts in the growth rate of atmospheric methane.
There are major challenges inherent in meeting the goals of the UK national energy policy, including, climate change mitigation and adaption, security of supply, asset renewal, supply infrastructure etc. Additionally, there is a recognized shortage of high quality scientists and engineers with energy-related training to tackle these challenges, and to support the UK's future research and development and innovation performance as evidenced by several recent reports;Doosan Babcock (Energy Brief, Issue 3, June 2007, Doosan Babcock); UK Energy Institute (conducted by Deloitte/Norman Broadbent, 'Skills Needs in the Energy Industry' 2008); The Institution of Engineering and Technology, (evidence to the House of Commons, Select Committee on Innovation, Universities, Science and Skills Fifth Report (19th June 2008); The Energy Research Partnership (Investigation into High-level Skills Shortages in the Energy Sector, March 2007). Here we present a proposal to host a Doctoral Training Centre (DTC) focusing on the development of technologies for a low carbon future, providing a challenging, exciting and inspiring research environment for the development of tomorrow's research leaders. This DTC will bring together a cohort of postgraduate research students and their supervisors to develop innovative technologies for a low carbon future based around the key interlinking themes: [1] Low Carbon Enabling Technologies; [2] Transport & Energy; [3] Carbon Storage, underpinned by [4] Climate Change & Energy Systems Research. Thereby each student will develop high level expertise in a particular topic but with excitement of working in a multidisciplinary environment. The DTC will be integrated within a campus wide Interdisciplinary Institute which coordinates energy research to tackle the 'Grand Challenge' of developing technologies for a low carbon future, our DTC students therefore working in a transformational research environment. The DTC will be housed in a NEW 14.8M Energy Research Building and administered by the established (2005) cross campus Earth, Energy & Environment (EEE) University Interdisciplinary Institute
My research programme is the study of how relativistic effects can be exploited to improve quantum information tasks, a key topic of immense technological importance already today and more so for the next decades. The vantage point of these investigations is that the world is fundamentally both quantum and relativistic, and that these facts are immensely useful for the design of communication devices that are absolutely safe from eavesdropping, and of quantum computers that can quickly perform difficult computational tasks which overwhelm any classically imaginable computer. Indeed, impressive technological achievements and promises have already been derived from taking seriously solely the quantum aspects of matter: quantum cryptography and communication have become a technical reality in recent years, but the practical construction of a quantum computer still requires to understand better how to efficiently store, manipulate and read information, without prohibitively large disturbances from the environment. Throwing relativity into the equation fundamentally changes the entire game, as I could show in a series of research papers, one of which was featured in a generally accessible Science article highlighting my work (Cho, Science 2005). I propose to push this exciting line of theoretical research to the point where relativistic effects in quantum information theory can be exploited technologically.Far from yielding only quantitative corrections, relativity plays a dominant role in the qualitative behaviour of many physical systems used to implement quantum information tasks in the laboratory. The prototypical example is provided by any system involving light, be it for the transmission or manipulation of quantum information. There is no such thing as a non-relativistic approximation to light quanta, so-called photons, since these always travel at the speed of light. While relativistic quantum theory, commonly known as quantum field theory, is a very well studied subject in foundational particle physics, research in quantum information theory selectively focused almost exclusively on those aspects one can study without relativity. Thus both unexpected obstacles (such as a relativistic degradation of quantum entanglement) and unimagined possibilities for quantum information theory (such as improved quantum cryptography and hypersensitive quantum measurement devices) have gone unnoticed. The relevance of these insights, which together with co-workers, I afforded over the past few years, are evidenced by the amount of work by other researchers recognizing and building on my work. Indeed, the impact of my research extends beyond pure quantum information theory, and applications to foundational questions in cosmology and black hole physics have been found.The research I propose to complete during my Fellowship aims at providing comprehensive answers to foundational, theoretical and technological aspects of relativistic quantum information theory, exploiting and building on the intriguing results obtained so far. My overall aspiration and vision is to ultimately provide concrete solutions to key problems in the field of quantum information theory.
In Europe, the total value of sewer assets amounts to 2 trillion Euros. The US Environmental Protection Agency estimates that water collection systems in the USA have a total replacement value between $1 and $2 trillion. Similar figures can be assigned to other types of buried pipe assets which supply clean water and gas. In China alone 40,000 km of new sewer pipes are laid every year. However, little is known about the condition of these pipes despite the pressure on water and gas supply utility companies to ensure that they operate continuously, safely and efficiently. In order to do this properly, the utility operator must identify the initial signs of failure and then respond to the onset of failure rapidly enough to avoid loss of potable water supply, wastewater flooding or gas escape. This is attempted through targeted inspection which is typically carried out through man-entry or with CCTV approaches, although more sophisticated (e.g. tethered) devices have been developed and are used selectively. Nevertheless, and in spite of the fact that the UK is a world leader in this research area, these approaches are slow and labour intensive, analysis is subjective, and their deployment disrupts traffic. Moreover, because these inspections are necessarily infrequent and only cover a small proportion of the pipe network, serious degradation is often missed and pipe failures occur unexpectedly, requiring emergency repairs that greatly disrupt life of the road and adjacent buried utility infrastructure. This Programme Grant proposes a radical change in terms of buried pipe sensing in order to address the issues of pipe inspection and rehabilitation. It builds upon recent advances in sensors, nano- and micro-electronics research, communication and robotic autonomous systems and aims to develop a completely new pervasive robotics sensing technology platform which is autonomous and covers the entire pipe network. These robots will be able to travel, cooperate and interrogate the pipes from the inside, detect the onset of any defects continuously, navigate to and zoom on sub-millimetre scale defects to examine them in detail, communicate and guide any maintenance equipment to repair the infrastructure at an early sign of deterioration. By being tiny, they do not present a danger of being stuck, blocking the pipe if damaged or run out of power. By being abundant, they introduce a high level of redundancy in the inspection system, so that routine inspection can continue after a loss of a proportion of the sensors in the swarm. By making use of the propagation of sonic waves and other types of sensing these robots can monitor any changes in the condition of the pipe walls, joints, valves and lateral connections; they can detect the early development and growth of sub-millimetre scale operational or structural faults and pipe corrosion. An important benefit of this sensing philosophy is that it mimics nature, i.e. the individual sensors are small, cheap and unsophisticated, but a swarm of them is highly capable and precise. This innovation will be the first of its kind to deploy swarms of miniaturised robots in buried pipes together with other emerging in-pipe sensor, navigation and communication solutions with long-term autonomy. Linked to the related previous work, iBUILD (EP/K012398), ICIF (EP/K012347) and ATU's Decision Support System (EP/K021699), this Programme Grant will create the technology that has flexibility to adapt to different systems of governance globally. This work will be done in collaboration with a number of industry partners who will help to develop a new set of requirements for the new pervasive robotic sensing platform to work in clean water, wastewater and gas pipes. They will support the formation and operation of the new research Centre of Autonomous Sensing for Buried Infrastructure in the UK and ensure that the results of this research have strong practical outcomes.
This proposal, via a combination of international and cross-disciplinary collaboration, will expand the research of the applicant, and indeed that of the University of Manchester Laser Processing Research Centre (LPRC), into laser treatment of biomedical materials. The programme establishes collaborative projects between the LPRC, the University of Waterloo (Canada) and The University of Manchester School of Dentistry based mainly on improving the biocompatibility of titanium surfaces. Other collaborative work between the LPRC and the University of Waterloo with a non-biomedical theme is also planned.The programme is divided into 3 phases:Phase 1: A researcher from The University of Waterloo will be hosted at The University of Manchester to perform investigative work into silica machining to improve fiber optic efficiency. Dr Pinkerton will observe that work and spend 20% of his time working in collaboration with the School of Dentistry. Phase 2: Dr Pinkerton will be hosted by The University of Waterloo and work partly on a surface engineering method for coating of both the graded porosity blanks produced in Manchester and simulated (full density) Ti implants with CPP or HAp. The emphasis will be on increasing all round skills in laser processing of biomedical materials through 'hand on' experience and exploratory research to identify possible future projects.Phase 3: Dr Pinkerton will return to Manchester and work for 1 month in collaboration with the School of Dentistry applying learned skills and using LPRC continuous wave and short pulse laser equipment to produce the surface coatings and surface modify them.The main contacts will be Dr E Toyserkani in The School of Mechanical and Mechatronics Engineering at the University of Waterloo and Professor D Watts, Head of the Adhesive Biomaterials & Biomechanics Research Theme in the School of Dentistry at The University of Manchester. Dr Toyserkani will visit the LPRC for 1-2 weeks during phase 1 of the project and will provide collaborative advice on installing a control system for the laser direct metal deposition equipment at the Centre.