Powered by OpenAIRE graph
Found an issue? Give us feedback

CNANO

CREATIVE NANO PC
Country: Greece
19 Projects, page 1 of 4
  • Funder: European Commission Project Code: 721642
    Overall Budget: 3,510,530 EURFunder Contribution: 3,510,530 EUR

    SOLUTION will provide research and training program for 14 early stage researchers (ESR) pursuing their PhD in various disciplines covering the broadly defined area of solid lubricant coatings. The project combines theoretical approaches represented by advanced nanoscale simulations, laboratory design and fabrication of novel solid lubricants supported by simulations, and the up-scaling of promising solutions and their application in selected emerging engineering applications. SOLUTION will link industries from various areas dealing with similar issues through intensive training and knowledge sharing. Three topics driven by industrial partners have been selected to demonstrate the added value of simultaneous development and training. The use of modern solid lubricants underlines the transformation of industry towards smart design, which is based on predictive models and cross-communication throughout the entire production chain. Fellows supported by the project will have a unique opportunity to gain competence ranging from simulation, characterization and processing, to industrial processes and entrepreneurship. Highly individualized multidisciplinary training reflecting actual market needs, together with scientific excellence, will generate an open-mind generation able to harvest multidisciplinary knowledge and to successfully face challenges represented by the design of competitive solid lubricants.

    more_vert
  • Funder: European Commission Project Code: 862195
    Overall Budget: 5,979,610 EURFunder Contribution: 5,979,610 EUR

    A major challenge for the global nanotechnology sector is the development of safe and functional engineered nanomaterials (ENMs) and nano-enabled products (NEPs). In this context, the application of the Safe-by-Design (SbD) concept has been adopted recently by the nanosafety community as a means to dampen human health and environmental risks, applying preventive safety measures during the design stage of a facility, process, material or product. However and despite its importance, SbD prescriptions are still in their infancy, and are hampered among other things by the lack of comprehensive data about the performance, hazard and release potential of the great variety of NEPs in use. SbD4Nano addresses that problem creating a comprehensive new e-infrastructure to foster dialogue and collaboration between all actors in the supply chain for a knowledge-driven definition of SbD setups that optimize hazard, technical performance and economic costs. Our project developes a validated rapid hazard profiling module, coupled to a new exposure-driven modelling framework to reduce toxicity. This safe-born material also undergoes a cost-benefit analysis algorithm to find the best compromise between safety and a industrially convenient technical performance. Finally, a new software interface where product information can be exchanged between the supply chain participants is the tool that wraps up, finishing the collaborative spirit of SbD4Nano between regulators, researchers and industry. Coherently with its goals, our SbD4Nano project is international and open-scienced in essence, with the clear aim of impacting the EU policies as well as directly and clearly benefiting the citizen.

    more_vert
  • Funder: European Commission Project Code: 101070556
    Overall Budget: 4,135,320 EURFunder Contribution: 4,135,320 EUR

    Prompted by the dire forecasts for increased resource extraction and waste generation, and their detrimental effects on climate and biodiversity, a Circular Economy Action Plan has been put forth where electronics and electronic equipment have been identified as a priority product group with circularity potential. With an annual growth in waste of 2%, this group is one of the fastest growing waste streams in the EU, while less than 40% of electronic waste is recycled within the EU. There is a need to explore new options for electronics that are designed for reuse, repair, and high-quality recycling. To address this challenge, several factors must be considered such as the Industrial End User’s (IEU) specifications, Life Cycle Analysis (LCA) and the products end-of-life (EoL). Printed electronics (PE) is an additive manfucaturing method that can address these challenges and is characterized by its versatility, scalability, and low material usage, thus making it an ideal candidate for a circular production of electronics in general. Flexible and even stretchable electronics can be obtained with this method by printing conductive and dielectric inks on flexible/stretchable substrates opening new applications in the market. However, similar to traditional electronic production methods, current life cycle for a PE product starts with materials (substrate, conductive and dielectric materials) obtained through mining of raw materials. These materials are put into production lines, consisting of large volume analogue printing, gluing on discrete components and lamination processes. The EoL are either landfills or incineration, which in both cases, destroys precious materials, thus forcing the use of mined raw materials. The main goal of Sustain-a-Print (SaP) is to open new life-cycle routes and to design and implement sustainability into each step of the life-cycle. This includes choice of materials, their usage, their origin, their processing, assembly, and EoL.

    more_vert
  • Funder: European Commission Project Code: 680718
    Overall Budget: 6,148,640 EURFunder Contribution: 4,959,450 EUR

    The total EU electronics industry employs ≈20.5 million people, sales exceeding €1 trillion and includes 396,000 SMEs. It is a major contributor to EU GDP and its size continues to grow fueled by demand from consumers to many industries. Despite its many positive impacts, the industry also faces some challenges connected with the enormous quantity of raw materials that it needs for sustainability, the huge quantity of Waste Electrical, Electronics Equipment (WEEE) generated and the threat of competition from Asia. To sustain its growth, to manage the impact of WEEE and to face the competition from Asia, the industry needs innovations in key areas. One such area is the drive for ultra-miniaturisation/ultlra-functionality of equipment. The key current road block/limitation to achieving the goal of ultra-miniaturisation/functionality is how to increase the component density on the printed circuit board (PCB). This is currently limited by the availability of hyper fine pitch solder powder pastes. FineSol aims to deliver at first stage an integrated production line for solder particles with size 1-10 μm and to formulate solder pastes containing these particles. Thus, by proper printing methods (e.g. screen and jet printing) the fabrication of PCBs with more than double component density will be achieved. Consequently, this would effectively enable more than a doubling of the functions available on electronic devices such as cell phones, satellite navigation systems, health devices etc. The successful completion of the FineSol project would lift the ultra-miniaturisation/functionality road block and also enable reduction in raw material usage, reduction in WEEE, reduction in pollution and associated health costs and also a major reduction in EU energy demand with all its indirect benefits for environment and society.

    more_vert
  • Funder: European Commission Project Code: 801464
    Overall Budget: 3,000,000 EURFunder Contribution: 3,000,000 EUR

    Thin film deposition methods are crucial to generate progress in Key Enabling Technologies (KETs) of strategic importance for Europe, including Advanced Materials, Nanotechnology, Micro- and Nanoelectronics, Biotechnology, and Photonics. Devices like photovoltaic cells, light emitting diodes, electronic and optoelectronic micro-/nano-sensors are prominent examples of thin film applications where the precise control of material deposition and its degree of order (crystallinity) are of paramount importance for their performance and function. However, technologies for thin film deposition have very limited capacity to tune the material crystallinity at room temperature and atmospheric pressure, or to create functional 3D architectures in a single and versatile manner. The requirement of high temperatures and vacuum conditions make them inherently costly and unsuitable for deposition on various substrates (e.g. plastics). Moreover, their dimensions are not compatible with miniaturization and integration in table-top interfaces that would broaden their potential use. These limitations restrain the development of ground-breaking functional materials and new-conceptual devices. The absence of a radically new deposition technology hampers innovation and the appearance of new and cost-effective marketable products. Therefore, it is of utmost importance to develop a radically new deposition technology to overcome these limitations, and that is at the core of the SPRINT project. SPRINT will develop a universal deposition technology of amorphous and tuned crystalline matter on multiple substrates, at room temperature and pressure. This technology not only combines the benefits of existing advanced deposition methods, at significantly lower cost and higher deposition rates, but also goes beyond the state-of-the-art in advanced materials development, to open new roadmaps to a plethora of future devices and applications.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.