
The REFHYNE project will install and operate a 10MW electrolyser from ITM Power at a large refinery in Rhineland, Germany, which is operated by Shell Deutschland Oils. The electrolyser will provide bulk quantities of hydrogen to the refinery’s hydrogen pipeline system (currently supplied by two steam methane reformers). The electrolyser will be operated in a highly responsive mode, helping to balance the refinery’s internal electricity grid and also selling Primary Control Reserve service to the German Transmission System Operators. The combination of hydrogen sales to the refinery and balancing payments create a business case which justifies this installation. This business case will be evaluated in detail, in a 2 year campaign of techno-economic and environmental analysis. The REFHYNE business model is replicable in markets with a similar regulatory structure to Germany. However, to expand this market to a GW scale, new business models will be needed. These will include valuing green hydrogen as an input to industrial processes (to meet carbon policy targets) and also on sales to H2 mobility markets. The REFHYNE project will gather real world data on these models and will use this to simulate the bulk electrolyser model in a range of market conditions. This will be used to produce reports on the conditions under which the electrolyser business models become viable, in order to provide the evidence base required to justify changes in existing policies. A campaign of targeted dissemination will ensure the results of these studies reach decision makers in large industrial sites, financiers, utilities and policy makers. The REFHYNE electrolyser will be the largest in the world and has been designed as the building block for future electrolysers up to 100MW and beyond. REFHYNE includes a design study into the options for a 100MW electrolyser at the Rhineland refinery, which will help prepare the market for deployments at this scale.
The DISC project addresses the need to reduce the consumption of fossil fuels by developing key technologies for the next generation of high-performance photovoltaic (PV) solar cells and modules, allowing ultra-low solar electricity costs with minimum environmental impact. DISC focuses on the only way to fully exploit the potential of silicon to its maximum: through the use of carrier selective junctions, i.e., contacts which allow charge carriers to be extracted without recombination. Such contacts allow for simple device architecture as considered in DISC - non-patterned double-side contacted cells – which can be fabricated within a lean process flow, either by upgrading existing or within future production lines. In DISC, a unique consortium of experienced industrial actors will collaborate with a set of institutes with demonstrated record devices and worldwide exceptional experience in the R&D field of carrier selective contacts. DISC will target efficiencies >25.5% on large area cell and >22% at module level while demonstrating pilot manufacturing readiness at competitive costs. Together with a reduction of non-abundant material consumption (Ag, In), with an enhancement of the energy yield, with modern module design ensuring outstanding durability, DISC will provide the key elements for achieving in Europe very low Levelized Costs of Electricity between 0.04 – 0.07$/kWh (depending on the irradiation), with mid-term potential for further reduction, making solar one of the cheapest electricity source. The high efficient PV modules developed in DISC are predestined for rooftop installations, i.e., neutral with respect to land use aspects. A life cycle approach applied in DISC prevents the shifting of environmental or social burdens between impact categories. DISC has a chance to contribute towards mitigating the impacts of climate change, improving energy access and towards bringing Europe back at the forefront of solar cell science, technology and manufacturing
Today’s world PV market is dominated by standard crystalline solar cells (so-called Al-BSF cells) and part of the market is shifting to PERC solar cells. The shift is obtained by introducing three additional process steps to the standard process (rear side cleaning, passivation and laser opening), and allows a gain of typically 1% absolute in efficiency. Next generation c-Si technologies should feature higher voltage solar cells with higher efficiency and less processing steps in the manufacturing, allowing for further cost reduction, both at the PV panel level and for the final cost of solar electricity. AMPERE focuses on technologies with such a potential and capitalizes on the high tech investments made in Europe over the last decade for establishing advanced manufacturing processes for crystalline silicon heterojunction (SHJ) solar cells and modules, on the development of hardware capable of coating at high speed and low cost homogeneous materials of high electronic quality. It also bases on the unique expertise gained in production of thin film modules, and in all hardware issues related to large area coatings in production environment, which can applied for the production of SHJ cells and modules. The final goal of the project is t the setting-up of a 100 MW full-scale automated pilot line in production environment at the 3Sun fab, while preparing the next steps to 300 MW and GW scale. The project will operate with the support of full technology platforms for solar cells at CEA and the platform for advanced module technologies at MBS. It will demonstrate practically the ultra-low cost potential of such manufacturing approaches, as well as the even more impressively low solar electricity generation costs thanks to high efficiency and/or intrinsic bifaciality of the selected technologies.
H2Haul will develop and demonstrate a total of 16 new heavy-duty (26–44t) hydrogen fuel cell trucks in real-world commercial operations. The project includes two major European truck manufacturers (IVECO and VDL), who will build on existing small-scale prototyping activities to develop new zero-emission trucks tailored to the needs of European customers, mainly in large supermarket fleets. The vehicles will be standardised as far as possible to help encourage the development of the European supply chain. New high-capacity hydrogen refuelling stations will be installed to provide reliable, low carbon hydrogen supplies to the trucks. Most of the stations will be publicly accessible and this project will thus support the uptake of a broader range of hydrogen-fuelled vehicles. The vehicles and infrastructure will be thoroughly tested via an extended trial with the high-profile end users over several years. The comprehensive data monitoring and analysis tasks will ensure that the technical, economic, and environmental performance of the hardware is assessed, and that the business case for further deployment of heavy-duty fuel cell trucks is developed. The scope and ambition of this innovative project will create a range of valuable information that will be disseminated widely amongst truck operators, representatives of the retail sector, policy makers, and the broader hydrogen industry. Hence, H2Haul will validate the ability of hydrogen fuel cell trucks to provide zero-emission mobility in heavy-duty applications and lay the foundations for commercialisation of this sector in Europe during the 2020s.
REVIVE will significantly advance the state of development of fuel cell refuse trucks, by integrating fuel cell powertrains into 15 vehicles and deploying them in 10 sites across Europe. The project will deliver substantial technical progress by integrating fuel cell systems from three major suppliers and developing effective hardware and control strategies to meet highly demanding refuse truck duty cycles. Specific work on standardisation will ensure that the lessons learned are applicable to the full range of OEMs supplying vehicles into the European market, helping to accelerate the introduction of next generation products. In parallel, the demonstration activities will greatly raise awareness of the viability of fuel cells as a solution to demanding heavy duty vehicle uses (and raise public awareness of hydrogen mobility more generally due to the visibility of the trucks). A successful demonstration of fuel cell trucks will have substantial impacts beyond the technical progress delivered by the project itself, as it will enable public authorities to continue implementing bold decarbonisation strategies by providing clear evidence that viable zero emissions solutions will exist for all vehicle types in the medium term. The project will also support the wider rollout of hydrogen mobility by introducing a further source of hydrogen demand that can improve the economics of existing and future refuelling station deployments, in turn facilitating the rollout of other vehicle types.