Powered by OpenAIRE graph
Found an issue? Give us feedback


Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg
42 Projects, page 1 of 9
  • Funder: EC Project Code: 842138
    Overall Budget: 262,210 EURFunder Contribution: 262,210 EUR

    Phosphorus (P) is an essential nutrient and major economic factor. The EU covers its demands by importing Phosphate rock listed as critical raw material due to its scarce resource. Sewage sludge from waste water treatment plants is a promising alternative source of P. RECaPhos focuses on development of a novel method for phosphorus recovery based on the thermo-chemical reaction of sewage sludge, in the presence of CaO in a fluidized-bed reactor, assuring in the same time the destroy of dangerous pathogens, antibiotics and contaminations. Goal is to develop, optimize, and evaluate the novel method and to provide rules and data for process up scaling purposes. This will be achieved by means of development of innovative models to investigate the thermodynamic and chemical process taking place. Experimental data from host institution facilities and data from literature will be used for models validation and optimization. The results will be used as a basis for the design of a demo plant as well as for the identification/evaluation of the process economics and commercialization potential. Two reference cases will be studied, one for a new plant and one for a retrofit of an existing fluidized bed combustion plant. Comparison with other competitive processes will be realized. RECaPHOS is original, highly innovative, and ambitious since the same cheap widely available, natural, non toxic, and environmental friendly Ca-based material is used for P adsorption and subsequent P recycling as it is directly used as feedstock for fertilizer production, closing a natural cycle. RECaPHOS is an excellent and unique opportunity for the researcher who is a mother of two daughters to restart her career after more than 4 years of career break prior to call deadline due to maternity and after resettling back to Europe/Germany after a 3 years continuous stay outside Europe in the last 5 years, in a highly innovative non-profit academic institution that supports women and work life balance.

  • Funder: EC Project Code: 621195
    Powered by Usage counts
  • Funder: EC Project Code: 325326
  • Funder: EC Project Code: 325275
    Powered by Usage counts
  • Funder: EC Project Code: 779475
    Overall Budget: 3,499,870 EURFunder Contribution: 3,499,870 EUR

    HYDRAITE project aims to solve the issue of hydrogen quality for transportation applications with the effort of partners from leading European research institutes and independent European automotive stack manufacturer, together with close contact and cooperation with the European FCH industry. In this project, the effects of contaminants, originating from the hydrogen supply chain, on the fuel cell systems in automotive applications are studied. As an outcome, recommendations for the current ISO 14687 standards will be formulated based on the technical data of the impurity concentrations at the HRS, FC contaminant studies under relevant automotive operation conditions, and inter-compared gas analysis. The methodology for determining the effect of contaminants in automotive PEMFC system operation will be developed by six leading European research institutes in co-operation with JRC and international partners. In addition, a methodology for in-line monitoring of hydrogen quality at the HRS, as well as sampling strategy and methodology for new impurities, gas, particles and liquids, will be evolved. Three European laboratories will be established, capable of measuring all of the contaminants according to ISO 14687 standards, and provide a strong evidence on the quality and reliability on their result. Beyond the project, the three laboratories will offer their services to the European FCH community. In addition, a network of expert laboratories will be set, able to provide qualitative analysis and the first analytical evidence on the presence or absence of these new compounds with potential negative effect to the FCEV. The efficient dissemination and communication improves the resulting data and input for the recommendations for ISO standards of hydrogen fuel. The project and its results will be public, to boost the impact of the project outcomes and to enhance the competitiveness of the European FC industry.

Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.