auto_awesome_motion View all 7 versions


Cyprus University of Technology
Country: Cyprus
97 Projects, page 1 of 20
  • Open Access mandate for Publications and Research data
    Funder: EC Project Code: 101090336
    Funder Contribution: 164,328 EUR
    Partners: CUT

    The objective of Sus-Bio-plastics is to develop new biotechnological waste-to-value chains for the most promising (based on market share value) bioplastics by implementing innovative microbially mediated practices. To achieve this aim, the project is structured under 3 innovation pillars, regarding 2 processes and 1 tool for integrating sustainability in waste management of bioplastics (1 non-biodegradable (bio-PE) and 3 biodegradable (PLA, PHB and TPS)). Microalgal-bacterial or bacterial communities will be exploited as a biotechnological tool to formulate a stable metapopulation capable of degrading bioplastics. In case mechanical recycling is considered as the best end-of-life option, a bioclean-up process of the weathered layer of the bioplastics PLA and bio-PE will be developed. This process will serve as a pretreatment stage prior to mechanical recycling which will yield near virgin pellets holding the capacity to enter the recycling stream. In case organic recycling is the best end-of-life option, a new bio-recycling route will be developed to treat waste biodegradable bioplastics (PHB and TPS) and produce high-value compounds. The mutualistic interplay between microalgal and bacterial species will be capitalized towards bioplastics upcycling and minimization of CO2 releases, constituting a highly novel approach which has not been previously explored.

  • Open Access mandate for Publications
    Funder: EC Project Code: 748600
    Overall Budget: 163,649 EURFunder Contribution: 163,649 EUR
    Partners: CUT

    One of the top ten goals set by the White Paper on Transport is to reduce fatalities in road transport. The European Union is aiming to halve road casualties by 2020, in line with the long term goal to move close to zero fatalities by 2050. Despite the reduction in road fatalities in the EU since 2010, there are specific countries where the numbers are increasing. In addition, the yearly decrease rate in road fatalities for Europe as a whole is slowing down. In order to reach the goal set for 2020, action should be taken immediately. The most vulnerable road users are motorcyclists, who are currently suffering from frequent fatalities in crashes involving road barriers. The European Road Assessment has indicated the critical need to adopt improved barrier designs to protect vulnerable road users. While rubberized concrete has been recommended for road barriers, challenges involving strength and durability of the material have not been addressed. This research proposes to develop optimised steel fibre-reinforced rubberised concrete mixtures as well as road barrier designs, which will lead to the development of SAFER road barriers with outstanding deformability and structural integrity; thus paving the way for forgiving road infrastructure. The use of recycled rubber and steel wires (obtained from End-of-life tyres) supports the Horizon 2020 Transport Research and Innovation Act priorities for sustainability and resource efficiency (including the Circular Economy package).

  • Open Access mandate for Publications and Research data
    Funder: EC Project Code: 841797
    Overall Budget: 157,941 EURFunder Contribution: 157,941 EUR
    Partners: CUT

    Bilge water is the main pollutant of shipboard wastewater; it can be briefly defined as saline, oily and greasy wastewater with a high COD (> 3-15 g COD L-1). The discharge of oil residue to marine environments is prohibited according to the International Maritime Organization (IMO) regulations (MARPOL 73/78) and the European directive 2000/59/EC. However, due to the fact that the major part of the oil in bilge water is emulsified, the physical methods may fail to satisfy the targeted treatment levels and contribute significantly to operational cost. Few studies are so far available for the use of biological methods for real bilge water treatment. Electro-SAnMBR” project will develop an innovative technology consisting of an electrolysis cell (EC) inside a Submerged Anaerobic Membrane Bioreactor (SAnMBR) for the treatment of real bilge water. The electrochemical system will be consisted by a pair of electrodes (anode and cathode, without an ion exchange membrane) inside a SAnMBR. This e-SAnMBR system will be developed and optimized at a laboratory scale at Environmental Engineering Laboratory (EEL) Cyprus University of Technology (CUT), then it will be operated at pilot scale at Ecofuel Cyprus Ltd and the microbial profile in bioreactors will be examined at Environmental Bioprocessing laboratory (EBL) at CUT. The electrodes will be constructed at the Nano/Micro Mechanics of Materials Lab (NMML) at CUT The research will be mainly implemented by Dr Gatidou and will involve novel aspects from many disciplines such as molecular microbiology, material science, environmental biotechnology, chemical engineering and environmental analysis and will also involve testing of bioreactors at industrial pilot scale level (Ecofuel Ltd). In addition, potential success of the project could lead to immediate application of the research findings by the company (Ecofuel Ltd) but also to future commercialization of the results

  • Open Access mandate for Publications and Research data
    Funder: EC Project Code: 810857
    Overall Budget: 2,495,380 EURFunder Contribution: 2,495,380 EUR
    Partners: CUT

    Cultural Heritage is a strategic resource for Europe with high cultural, social, environmental and economic value. The era of Digital Cultural Heritage (DCH) is now well underway and the European research resource for DCH has grown significantly in recent years. But the visible contribution of the Widening countries to this effort remains relatively weak. The Digital Heritage Research Laboratory (DHRLab) at Cyprus University of Technology (CUT) has been an exception in this respect, becoming a beacon in the Eastern Mediterranean and for Europe in general, in particular through its leadership of key initiatives in DCH research training and in policy co-ordination and support. While the Cypriot economy gradually recovers, in order to maintain and expand its leading role in DCH research, DHRLab needs further investment. The call for ERA Chairs is an ideal opportunity to ensure this by means of a well-designed and iterative process of strengthening its research capacity and restructuring of its role. Mnemosyne will proceed from the appointment of an outstanding researcher and research manager as ERA Chair holder in 2018 who will attract, direct and maintain high quality human resources and negotiate and implement the necessary structural changes to achieve excellence on a sustainable basis. The project will be carried out over a period of 5 years. Following recruitment of the ERA Chair Research Team, a three-phase research programme centred on holistic documentation of the DCH life cycle in support of existing and potential user needs will be carried out and extensively evaluated, with strong attention paid to exploitation. Communication activities, will be strategically planned and refined from the outset of the work and will last throughout the project duration.