Filters
Year range
Country (8)
- Publication . Article . Other literature type . 2021Open Access EnglishAuthors:Rupert Gladstone; Benjamin K. Galton-Fenzi; David E. Gwyther; Qin Zhou; Tore Hattermann; Chen Zhao; Lenneke M. Jong; Yuwei Xia; Xiaoran Guo; Konstantinos Petrakopoulos; +3 moreRupert Gladstone; Benjamin K. Galton-Fenzi; David E. Gwyther; Qin Zhou; Tore Hattermann; Chen Zhao; Lenneke M. Jong; Yuwei Xia; Xiaoran Guo; Konstantinos Petrakopoulos; Thomas Zwinger; Daniel Shapero; John C. Moore;Publisher: European Geosciences Union (EGU)Country: NorwayProject: AKA | Simulating Antarctic mari... (286587), EC | CRAG (299035), AKA | The impact of Antarctic I... (322430), ARC | Special Research Initiati... (SR140300001)
Abstract. A number of important questions concern processes at the margins of ice sheets where multiple components of the Earth system, most crucially ice sheets and oceans, interact. Such processes include thermodynamic interaction at the ice–ocean interface, the impact of meltwater on ice shelf cavity circulation, the impact of basal melting of ice shelves on grounded ice dynamics and ocean controls on iceberg calving. These include fundamentally coupled processes in which feedback mechanisms between ice and ocean play an important role. Some of these mechanisms have major implications for humanity, most notably the impact of retreating marine ice sheets on the global sea level. In order to better quantify these mechanisms using computer models, feedbacks need to be incorporated into the modelling system. To achieve this, ocean and ice dynamic models must be coupled, allowing runtime information sharing between components. We have developed a flexible coupling framework based on existing Earth system coupling technologies. The open-source Framework for Ice Sheet–Ocean Coupling (FISOC) provides a modular approach to coupling, facilitating switching between different ice dynamic and ocean components. FISOC allows fully synchronous coupling, in which both ice and ocean run on the same time step, or semi-synchronous coupling in which the ice dynamic model uses a longer time step. Multiple regridding options are available, and there are multiple methods for coupling the sub-ice-shelf cavity geometry. Thermodynamic coupling may also be activated. We present idealized simulations using FISOC with a Stokes flow ice dynamic model coupled to a regional ocean model. We demonstrate the modularity of FISOC by switching between two different regional ocean models and presenting outputs for both. We demonstrate conservation of mass and other verification steps during evolution of an idealized coupled ice–ocean system, both with and without grounding line movement.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
1 Research products, page 1 of 1
Loading
- Publication . Article . Other literature type . 2021Open Access EnglishAuthors:Rupert Gladstone; Benjamin K. Galton-Fenzi; David E. Gwyther; Qin Zhou; Tore Hattermann; Chen Zhao; Lenneke M. Jong; Yuwei Xia; Xiaoran Guo; Konstantinos Petrakopoulos; +3 moreRupert Gladstone; Benjamin K. Galton-Fenzi; David E. Gwyther; Qin Zhou; Tore Hattermann; Chen Zhao; Lenneke M. Jong; Yuwei Xia; Xiaoran Guo; Konstantinos Petrakopoulos; Thomas Zwinger; Daniel Shapero; John C. Moore;Publisher: European Geosciences Union (EGU)Country: NorwayProject: AKA | Simulating Antarctic mari... (286587), EC | CRAG (299035), AKA | The impact of Antarctic I... (322430), ARC | Special Research Initiati... (SR140300001)
Abstract. A number of important questions concern processes at the margins of ice sheets where multiple components of the Earth system, most crucially ice sheets and oceans, interact. Such processes include thermodynamic interaction at the ice–ocean interface, the impact of meltwater on ice shelf cavity circulation, the impact of basal melting of ice shelves on grounded ice dynamics and ocean controls on iceberg calving. These include fundamentally coupled processes in which feedback mechanisms between ice and ocean play an important role. Some of these mechanisms have major implications for humanity, most notably the impact of retreating marine ice sheets on the global sea level. In order to better quantify these mechanisms using computer models, feedbacks need to be incorporated into the modelling system. To achieve this, ocean and ice dynamic models must be coupled, allowing runtime information sharing between components. We have developed a flexible coupling framework based on existing Earth system coupling technologies. The open-source Framework for Ice Sheet–Ocean Coupling (FISOC) provides a modular approach to coupling, facilitating switching between different ice dynamic and ocean components. FISOC allows fully synchronous coupling, in which both ice and ocean run on the same time step, or semi-synchronous coupling in which the ice dynamic model uses a longer time step. Multiple regridding options are available, and there are multiple methods for coupling the sub-ice-shelf cavity geometry. Thermodynamic coupling may also be activated. We present idealized simulations using FISOC with a Stokes flow ice dynamic model coupled to a regional ocean model. We demonstrate the modularity of FISOC by switching between two different regional ocean models and presenting outputs for both. We demonstrate conservation of mass and other verification steps during evolution of an idealized coupled ice–ocean system, both with and without grounding line movement.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.