search
2 Research products

Relevance
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Mariana Galvão Ferrarini; Aguiar-Pulido; Eric T. Dawson; Andrea Guarracino; +21 Authors

    As part of the virtual BioHackathon 2020, we formed a working group that focused on the analysis of gene expression in the context of COVID-19. More specifically, we performed transcriptome analyses on published datasets in order to better understand the interaction between the human host and the SARS-CoV-2 virus.The ideas proposed during this hackathon were divided into five projects. Projects 1 and 2 aimed to identify human genes that are important in the process of viral infection of human cells. Projects 3 and 4 aimed to take the candidate genes identified in projects 1 and 2, as well as by independent studies, and relate them to clinical information and to possible therapeutic interventions. Finally, Project 5 aimed to package and containerize software and workflows used and generated here in a reusable manner, ultimately providing scalable and reproducible workflows.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://biohackrxiv.o...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    http://biohackrxiv.org/b4zkp/d...
    Preprint
    License: cc-by
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Aguiar-Pulido, Vanessa; Ferrarini, Mariana G.; Guarracino, Andrea; Ruiz-Arenas, Carlos;

    These data represent results from: Processing reads from 20 experiments (part of GSE147507) by following a standard approach, which includes using STAR to align the reads to GRCh38 and StringTie to calculate the (raw) counts per experiment. These results depict the transcriptomic response of human cells to SARS-CoV-2, RSV and H1N1, and enrichment analyses based on genes differentially expressed in SARS-CoV-2 but not in RSV or H1N1. (Authors: V.A.-P., M.G.F. and A.G.) Aligning to SARS-CoV-2 and quantifying reads by using HISAT2 and StringTie. (Author: C.R.-A.) Disclaimer: These results were obtained during the virtual BioHackathon 2020. As such, they are subject to ongoing research and have thus NOT yet undergone any scientific peer-review. That is, none of the contents can be considered to be free of errors and must be taken with caution! {"references": ["Ferrarini, Aguiar-Pulido et al. (2020). Global analysis of human SARS-CoV-2 infection and host-virus interaction. BioHackrXiv. https://doi.org/10.37044/osf.io/b4zkp"]} Data uploaded here are licensed under the CC0 1.0 Universal license

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility928
    visibilityviews928
    downloaddownloads239
    Powered by BIP!
Powered by OpenAIRE graph
2 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Mariana Galvão Ferrarini; Aguiar-Pulido; Eric T. Dawson; Andrea Guarracino; +21 Authors

    As part of the virtual BioHackathon 2020, we formed a working group that focused on the analysis of gene expression in the context of COVID-19. More specifically, we performed transcriptome analyses on published datasets in order to better understand the interaction between the human host and the SARS-CoV-2 virus.The ideas proposed during this hackathon were divided into five projects. Projects 1 and 2 aimed to identify human genes that are important in the process of viral infection of human cells. Projects 3 and 4 aimed to take the candidate genes identified in projects 1 and 2, as well as by independent studies, and relate them to clinical information and to possible therapeutic interventions. Finally, Project 5 aimed to package and containerize software and workflows used and generated here in a reusable manner, ultimately providing scalable and reproducible workflows.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://biohackrxiv.o...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    http://biohackrxiv.org/b4zkp/d...
    Preprint
    License: cc-by
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Aguiar-Pulido, Vanessa; Ferrarini, Mariana G.; Guarracino, Andrea; Ruiz-Arenas, Carlos;

    These data represent results from: Processing reads from 20 experiments (part of GSE147507) by following a standard approach, which includes using STAR to align the reads to GRCh38 and StringTie to calculate the (raw) counts per experiment. These results depict the transcriptomic response of human cells to SARS-CoV-2, RSV and H1N1, and enrichment analyses based on genes differentially expressed in SARS-CoV-2 but not in RSV or H1N1. (Authors: V.A.-P., M.G.F. and A.G.) Aligning to SARS-CoV-2 and quantifying reads by using HISAT2 and StringTie. (Author: C.R.-A.) Disclaimer: These results were obtained during the virtual BioHackathon 2020. As such, they are subject to ongoing research and have thus NOT yet undergone any scientific peer-review. That is, none of the contents can be considered to be free of errors and must be taken with caution! {"references": ["Ferrarini, Aguiar-Pulido et al. (2020). Global analysis of human SARS-CoV-2 infection and host-virus interaction. BioHackrXiv. https://doi.org/10.37044/osf.io/b4zkp"]} Data uploaded here are licensed under the CC0 1.0 Universal license

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility928
    visibilityviews928
    downloaddownloads239
    Powered by BIP!
Powered by OpenAIRE graph
Send a message
How can we help?
We usually respond in a few hours.