- Publication . Conference object . 2015Open AccessAuthors:Pengfei Liu; Shafiq Joty; Helen Meng;Pengfei Liu; Shafiq Joty; Helen Meng;
doi: 10.18653/v1/d15-1168
Publisher: Association for Computational LinguisticsThe tasks in fine-grained opinion mining can be regarded as either a token-level sequence labeling problem or as a semantic compositional task. We propose a general class of discriminative models based on recurrent neural networks (RNNs) and word embeddings that can be successfully applied to such tasks without any taskspecific feature engineering effort. Our experimental results on the task of opinion target identification show that RNNs, without using any hand-crafted features, outperform feature-rich CRF-based models. Our framework is flexible, allows us to incorporate other linguistic features, and achieves results that rival the top performing systems in SemEval-2014.
Substantial popularitySubstantial popularity In top 1%Substantial influencePopularity: Citation-based measure reflecting the current impact.Substantial influence In top 1%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
1 Research products, page 1 of 1
Loading
- Publication . Conference object . 2015Open AccessAuthors:Pengfei Liu; Shafiq Joty; Helen Meng;Pengfei Liu; Shafiq Joty; Helen Meng;
doi: 10.18653/v1/d15-1168
Publisher: Association for Computational LinguisticsThe tasks in fine-grained opinion mining can be regarded as either a token-level sequence labeling problem or as a semantic compositional task. We propose a general class of discriminative models based on recurrent neural networks (RNNs) and word embeddings that can be successfully applied to such tasks without any taskspecific feature engineering effort. Our experimental results on the task of opinion target identification show that RNNs, without using any hand-crafted features, outperform feature-rich CRF-based models. Our framework is flexible, allows us to incorporate other linguistic features, and achieves results that rival the top performing systems in SemEval-2014.
Substantial popularitySubstantial popularity In top 1%Substantial influencePopularity: Citation-based measure reflecting the current impact.Substantial influence In top 1%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.