Filters
Year range
Source (9)
- Publication . Article . Other literature type . 2021Open AccessAuthors:Valentin Resseguier; Agustin Picard; Etienne Mémin; Bertrand Chapron;Valentin Resseguier; Agustin Picard; Etienne Mémin; Bertrand Chapron;
doi: 10.1137/19m1354819
Publisher: Society for Industrial & Applied Mathematics (SIAM)Country: FranceProject: EC | STUOD (856408)In this paper, we present a new method to quantify the uncertainty introduced by the drastic dimensionality reduction commonly practiced in the field of computational fluid dynamics, the ultimate goal being to simulate accurate priors for real-time data assimilation. Our key ingredient is a stochastic Navier--Stokes closure mechanism that arises by assuming random unresolved flow components. This decomposition is carried out through Galerkin projection with a proper orthogonal decomposition (POD-Galerkin) basis. The residual velocity fields, model structure, and evolution of coefficients of the reduced order's solutions are used to compute the resulting multiplicative and additive noise's correlations. The low computational cost of these consistent correlation estimators makes them applicable to the study of complex fluid flows. This stochastic POD-reduced order model (POD-ROM) is applied to 2-dimensional and 3-dimensional direct numerical simulations of wake flows at Reynolds 100 and 300, respectively, with uncertainty quantification and forecasting outside the learning interval being the main focus. The proposed stochastic POD-ROM approach is shown to stabilize the unstable temporal coefficients and to maintain their variability under control, while exhibiting an impressively accurate predictive capability.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
1 Research products, page 1 of 1
Loading
- Publication . Article . Other literature type . 2021Open AccessAuthors:Valentin Resseguier; Agustin Picard; Etienne Mémin; Bertrand Chapron;Valentin Resseguier; Agustin Picard; Etienne Mémin; Bertrand Chapron;
doi: 10.1137/19m1354819
Publisher: Society for Industrial & Applied Mathematics (SIAM)Country: FranceProject: EC | STUOD (856408)In this paper, we present a new method to quantify the uncertainty introduced by the drastic dimensionality reduction commonly practiced in the field of computational fluid dynamics, the ultimate goal being to simulate accurate priors for real-time data assimilation. Our key ingredient is a stochastic Navier--Stokes closure mechanism that arises by assuming random unresolved flow components. This decomposition is carried out through Galerkin projection with a proper orthogonal decomposition (POD-Galerkin) basis. The residual velocity fields, model structure, and evolution of coefficients of the reduced order's solutions are used to compute the resulting multiplicative and additive noise's correlations. The low computational cost of these consistent correlation estimators makes them applicable to the study of complex fluid flows. This stochastic POD-reduced order model (POD-ROM) is applied to 2-dimensional and 3-dimensional direct numerical simulations of wake flows at Reynolds 100 and 300, respectively, with uncertainty quantification and forecasting outside the learning interval being the main focus. The proposed stochastic POD-ROM approach is shown to stabilize the unstable temporal coefficients and to maintain their variability under control, while exhibiting an impressively accurate predictive capability.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.