search
Include:

Filters

2 Research products, page 1 of 1

Relevance
arrow_drop_down
  • Open Access
    Authors: 
    Weissbourd, Brandon; Momose, Tsuyoshi; Nair, Aditya; Kennedy, Ann; Hunt, Bridgett; Anderson, David J.;
    Publisher: Cold Spring Harbor Laboratory
    Country: United States

    Jellyfish are free-swimming, radially symmetric organisms with complex behaviors that arise from coordinated interactions between distinct, autonomously functioning body parts. This behavioral complexity evolved without a corresponding cephalization of the nervous system. The systems-level neural mechanisms through which such decentralized control is achieved remain unclear. Here, we address this question using the jellyfish, Clytia, and present it as a new neuroscience model. We describe a coordinated, asymmetric behavior in which food is passed from the umbrellar margin to the central mouth via directed margin folding. Using newly developed transgenic jellyfish lines to ablate or image specific neuronal subpopulations, we find, unexpectedly, that margin folding reflects the local activation of neural subnetworks that tile the umbrella. Modeling suggests that this structured ensemble activity emerges from sparse, local connectivity rules. These findings reveal how an organismal behavior can emerge from local interactions between functional modules in the absence of a central brain.

  • Open Access
    Authors: 
    Brandon Weissbourd; Tsuyoshi Momose; Aditya Nair; Ann Kennedy; Bridgett Hunt; David J. Anderson;
    Publisher: Cold Spring Harbor Laboratory

    SummaryJellyfish are free-swimming, radially symmetric organisms with complex behaviors that arise from coordinated interactions between distinct, autonomously functioning body parts. This behavioral complexity evolved without a corresponding cephalization of the nervous system. The systems-level neural mechanisms through which such decentralized control is achieved remain unclear. Here, we address this question using the jellyfish,Clytia,and present it as a new neuroscience model. We describe a coordinated, asymmetric behavior in which food is passed from the umbrellar margin to the central mouth via directed margin folding. Using newly developed transgenic jellyfish lines to ablate or image specific neuronal subpopulations, we find, unexpectedly, that margin folding reflects the local activation of neural subnetworks that tile the umbrella. Modeling suggests that this structured ensemble activity emerges from sparse, local connectivity rules. These findings reveal how an organismal behavior can emerge from local interactions between functional modules in the absence of a central brain.

Include:
2 Research products, page 1 of 1
  • Open Access
    Authors: 
    Weissbourd, Brandon; Momose, Tsuyoshi; Nair, Aditya; Kennedy, Ann; Hunt, Bridgett; Anderson, David J.;
    Publisher: Cold Spring Harbor Laboratory
    Country: United States

    Jellyfish are free-swimming, radially symmetric organisms with complex behaviors that arise from coordinated interactions between distinct, autonomously functioning body parts. This behavioral complexity evolved without a corresponding cephalization of the nervous system. The systems-level neural mechanisms through which such decentralized control is achieved remain unclear. Here, we address this question using the jellyfish, Clytia, and present it as a new neuroscience model. We describe a coordinated, asymmetric behavior in which food is passed from the umbrellar margin to the central mouth via directed margin folding. Using newly developed transgenic jellyfish lines to ablate or image specific neuronal subpopulations, we find, unexpectedly, that margin folding reflects the local activation of neural subnetworks that tile the umbrella. Modeling suggests that this structured ensemble activity emerges from sparse, local connectivity rules. These findings reveal how an organismal behavior can emerge from local interactions between functional modules in the absence of a central brain.

  • Open Access
    Authors: 
    Brandon Weissbourd; Tsuyoshi Momose; Aditya Nair; Ann Kennedy; Bridgett Hunt; David J. Anderson;
    Publisher: Cold Spring Harbor Laboratory

    SummaryJellyfish are free-swimming, radially symmetric organisms with complex behaviors that arise from coordinated interactions between distinct, autonomously functioning body parts. This behavioral complexity evolved without a corresponding cephalization of the nervous system. The systems-level neural mechanisms through which such decentralized control is achieved remain unclear. Here, we address this question using the jellyfish,Clytia,and present it as a new neuroscience model. We describe a coordinated, asymmetric behavior in which food is passed from the umbrellar margin to the central mouth via directed margin folding. Using newly developed transgenic jellyfish lines to ablate or image specific neuronal subpopulations, we find, unexpectedly, that margin folding reflects the local activation of neural subnetworks that tile the umbrella. Modeling suggests that this structured ensemble activity emerges from sparse, local connectivity rules. These findings reveal how an organismal behavior can emerge from local interactions between functional modules in the absence of a central brain.

Send a message
How can we help?
We usually respond in a few hours.