- Publication . Article . 2017Open AccessAuthors:Ashley Zachariah; Arno de Klerk;Ashley Zachariah; Arno de Klerk;Publisher: American Chemical Society (ACS)
Solvent deasphalting and visbreaking are two important technologies in the development of processes for partial upgrading of oilsands-derived bitumen to improve oil fluidity for pipeline transport. This work investigated the impact of the process sequence, solvent deasphalting followed by visbreaking (SDA-Vis) compared to visbreaking followed by solvent deasphalting (Vis-SDA). Thermal conversion during visbreaking was performed at 380 °C for 85 min, and solvent deasphalting was performed with n-pentane. Using this combination of processes in either sequence changed bitumen from a viscosity-limited fluid to a density-limited fluid with respect to pipeline specifications. The density and viscosity of the oil products from SDA-Vis and Vis-SDA were comparable. It was found that SDA-Vis achieved 2 wt % higher liquid yield than Vis-SDA. Conversely, Vis-SDA produced an oil product with higher hydrogen to carbon ratio compared to SDA-Vis. This difference could be explained in terms of hydrogen transfer during the...
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
1 Research products, page 1 of 1
Loading
- Publication . Article . 2017Open AccessAuthors:Ashley Zachariah; Arno de Klerk;Ashley Zachariah; Arno de Klerk;Publisher: American Chemical Society (ACS)
Solvent deasphalting and visbreaking are two important technologies in the development of processes for partial upgrading of oilsands-derived bitumen to improve oil fluidity for pipeline transport. This work investigated the impact of the process sequence, solvent deasphalting followed by visbreaking (SDA-Vis) compared to visbreaking followed by solvent deasphalting (Vis-SDA). Thermal conversion during visbreaking was performed at 380 °C for 85 min, and solvent deasphalting was performed with n-pentane. Using this combination of processes in either sequence changed bitumen from a viscosity-limited fluid to a density-limited fluid with respect to pipeline specifications. The density and viscosity of the oil products from SDA-Vis and Vis-SDA were comparable. It was found that SDA-Vis achieved 2 wt % higher liquid yield than Vis-SDA. Conversely, Vis-SDA produced an oil product with higher hydrogen to carbon ratio compared to SDA-Vis. This difference could be explained in terms of hydrogen transfer during the...
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.