search
Include:
1 Research products, page 1 of 1

Relevance
arrow_drop_down
  • Open Access
    Authors: 
    Paul Martin; Laurent Remy; Maria Theodoridou; Keith G. Jeffery; Zhiming Zhao;
    Publisher: Zenodo
    Country: Netherlands
    Project: EC | ENVRI-FAIR (824068), EC | ENVRI PLUS (654182), EC | EPOS IP (676564), EC | VRE4EIC (676247)

    Virtual Research Environments (VREs), also known as science gateways or virtual laboratories, assist researchers in data science by integrating tools for data discovery, data retrieval, workflow management and researcher collaboration, often coupled with a specific computing infrastructure. Recently, the push for better open data science has led to the creation of a variety of dedicated research infrastructures (RIs) that gather data and provide services to different research communities, all of which can be used independently of any specific VRE. There is therefore a need for generic VREs that can be coupled with the resources of many different RIs simultaneously, easily customised to the needs of specific communities. The resource metadata produced by these RIs rarely all adhere to any one standard or vocabulary however, making it difficult to search and discover resources independently of their providers without some translation into a common framework. Cross-RI search can be expedited by using mapping services that harvest RI-published metadata to build unified resource catalogues, but the development and operation of such services pose a number of challenges. In this paper, we discuss some of these challenges and look specifically at the VRE4EIC Metadata Portal, which uses X3ML mappings to build a single catalogue for describing data products and other resources provided by multiple RIs. The Metadata Portal was built in accordance to the e-VRE Reference Architecture, a microservice-based architecture for generic modular VREs, and uses the CERIF standard to structure its catalogued metadata. We consider the extent to which it addresses the challenges of cross-RI search, particularly in the environmental and earth science domain, and how it can be further augmented, for example to take advantage of linked vocabularies to provide more intelligent semantic search across multiple domains of discourse.

Include:
1 Research products, page 1 of 1
  • Open Access
    Authors: 
    Paul Martin; Laurent Remy; Maria Theodoridou; Keith G. Jeffery; Zhiming Zhao;
    Publisher: Zenodo
    Country: Netherlands
    Project: EC | ENVRI-FAIR (824068), EC | ENVRI PLUS (654182), EC | EPOS IP (676564), EC | VRE4EIC (676247)

    Virtual Research Environments (VREs), also known as science gateways or virtual laboratories, assist researchers in data science by integrating tools for data discovery, data retrieval, workflow management and researcher collaboration, often coupled with a specific computing infrastructure. Recently, the push for better open data science has led to the creation of a variety of dedicated research infrastructures (RIs) that gather data and provide services to different research communities, all of which can be used independently of any specific VRE. There is therefore a need for generic VREs that can be coupled with the resources of many different RIs simultaneously, easily customised to the needs of specific communities. The resource metadata produced by these RIs rarely all adhere to any one standard or vocabulary however, making it difficult to search and discover resources independently of their providers without some translation into a common framework. Cross-RI search can be expedited by using mapping services that harvest RI-published metadata to build unified resource catalogues, but the development and operation of such services pose a number of challenges. In this paper, we discuss some of these challenges and look specifically at the VRE4EIC Metadata Portal, which uses X3ML mappings to build a single catalogue for describing data products and other resources provided by multiple RIs. The Metadata Portal was built in accordance to the e-VRE Reference Architecture, a microservice-based architecture for generic modular VREs, and uses the CERIF standard to structure its catalogued metadata. We consider the extent to which it addresses the challenges of cross-RI search, particularly in the environmental and earth science domain, and how it can be further augmented, for example to take advantage of linked vocabularies to provide more intelligent semantic search across multiple domains of discourse.

Send a message
How can we help?
We usually respond in a few hours.