- Publication . Part of book or chapter of book . 2014Open Access EnglishAuthors:Miriam Fernandez; A. Elizabeth Cano; Harith Alani;Miriam Fernandez; A. Elizabeth Cano; Harith Alani;Project: EC | TRIVALENT (740934)
Social Media is commonly used by policing organisations to spread the word on crime, weather, missing person, etc. In this work we aim to understand what attracts citizens to engage with social media policing content. To study these engagement dynamics we propose a combination of machine learning and semantic analysis techniques. Our initial research, performed over 3,200 posts from @dorsetpolice Twitter account, shows that writing longer posts, with positive sentiment, and sending them out before 4pm, was found to increase the probability of attracting attention. Additionally, posts about weather, roads and infrastructures, mentioning places, are also more likely to \ud attract attention.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
1 Research products, page 1 of 1
Loading
- Publication . Part of book or chapter of book . 2014Open Access EnglishAuthors:Miriam Fernandez; A. Elizabeth Cano; Harith Alani;Miriam Fernandez; A. Elizabeth Cano; Harith Alani;Project: EC | TRIVALENT (740934)
Social Media is commonly used by policing organisations to spread the word on crime, weather, missing person, etc. In this work we aim to understand what attracts citizens to engage with social media policing content. To study these engagement dynamics we propose a combination of machine learning and semantic analysis techniques. Our initial research, performed over 3,200 posts from @dorsetpolice Twitter account, shows that writing longer posts, with positive sentiment, and sending them out before 4pm, was found to increase the probability of attracting attention. Additionally, posts about weather, roads and infrastructures, mentioning places, are also more likely to \ud attract attention.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.