search

  • 2013-2022
  • Research software
  • Other research products
  • EBRAINS
  • Neuroinformatics

Relevance
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Cross, Emily S.; Riddoch, Katie A.; Pratts, Jaydan; Titone, Simon; +2 Authors

    Cross, E. S., Riddoch, K. A., Pratts, J., Titone, S., Chaudhury, B., & Hortensius, R. (2019). A neurocognitive investigation of the impact of socialising with a robot on empathy for pain:. http://doi.org/10.1101/470534

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NeuroVault
    Other ORP type . 2020
    License: CC 0
    Data sources: NeuroVault
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NeuroVault
      Other ORP type . 2020
      License: CC 0
      Data sources: NeuroVault
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gordon, Brian A.; Friedrichsen, Karl; Brier, Matthew; Blazey, Tyler; +10 Authors
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NeuroVault
    Other ORP type . 2016
    License: CC 0
    Data sources: NeuroVault
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NeuroVault
      Other ORP type . 2016
      License: CC 0
      Data sources: NeuroVault
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vanagas, Tadas;

    Tyrimo tikslas. Ištirti itakoninės rūgšties poveikį smegenų audinio energijos apykaitos mechanizmams. Tyrimo uždaviniai. Įvertinti itakoninės rūgšties (IR), 4-oktilitakonato (4-OI) ir dimetilitakonato (DMI) poveikį nuo I – ojo ir II – ojo elektronų pernašos grandinės kompleksų (EPG) priklausomam deguonies suvartojimo greičiui. Įvertinti IR poveikį ROS gamybai. Metodai. Eksperimentams naudojamos pirminės žiurkių smegenėlių granulinio sluoksnio ląstelių kultūros, su kuriomis buvo atliekami respirometrijos tyrimai, t.y. matuojamas deguonies suvartojimo greitis (DSG). Kvėpavimo proceso vykdymui naudota IR – 1 mM, 2 mM ir 5 mM koncentracijomis, 4-OI – 250 μM, 500 μM ir 750 μM koncentracijomis ir ląstelės po 24 valandų inkubacijos su 50 μM DMI ir 100 ng/ml LPS. Tam kad vyktų kvėpavimo procesas buvo naudojami substratai: 6 mM piruvatas + 6 mM malatas, 2 mM ADP, 10.17 μM digitoninas, 10 mM glutamatas, 1 μM CAT, 1 μM CCCP, 10 mM sukcinatas, 0.5 μM rotenonas, 100 mM azidas. Gauti DSG išreikšti pmolO2/s*ml/106/ml ląstelių skaičiui. Eksperimentams su smegenų mitochondrijomis buvo naudojami tie patys substratai, o rezultatai išreikšti pmolO2/s*ml/0.5 mg mitochondrijų baltymo. ROS gamyba buvo registruojama naudojant izoliuotas mitochondrijos su 6 mM piruvato + 6 mM malato + 2 mM ADP arba su 10 mM sukcinato + 5 μM rotenono šulinėlyje su 0,25 mg/ml mitochondrijų baltymo. Rezultatai. IR slopina nuo I – ojo ir II – ojo EPG kompleksų priklausomą deguonies suvartojimo greitį atitinkamai: 1 mM koncentracija – 29.75% ir 17.03%, 2 mM IR – 25.85% ir 44.42%, 5 mM IR – 53.06% ir 51.78%. Nustatyta priklausomybė nuo IR koncentracijos. Kaip ir IR, taip pat ir 4-OI slopina nuo I – ojo EPG komplekso priklausomą DSG 43.64 ± 1.3% 500-750 μM koncentracijomis. 4-OI slopina nuo II – ojo EPG komplekso priklausomą DSG 58.52 ± 6.27% 250-750 μM koncentracijomis. DMI nekeičia DSG ląstelėse kvėpuojančiose su I – ojo ir II – ojo EPG kompleksų substratais. Taip pat IR 5 mM koncentracija reikšmingai mažina nuo I – ojo ir II – ojo EPG kompleksų priklausomą ROS gamybą atitinkamai 41.34% ir 39.14%. Išvados. Itakoninė rūgštis ir 4-oktilitakonatas slopina smegenų ląstelių mitochondrijų nuo I-ojo ir II-ojo elektronų pernašos grandinės kompleksų priklausomą deguonies suvartojimo greitį. Dimetilitakonatas slopinančiu poveikiu nepasižymi. Itakoninė rūgštis taip pat geba sumažinti ROS gamybą smegenų mitochondrijose. Aim. To investigate the effect of IA on the bioenergetic processess in the brain tissue. Objectives. To evaluate the effect of IA, 4-octylitaconate (4-OI) and dimethylitaconate (DMI) on the I and II electron transport chain (ETC) complex dependent oxygen consumption rates. To evaluate the effect of IA for ROS generation. Methods. Primary rat cerebellar granular cell (CGC) cultures were used for respirometry experiments where oxygen consumption rates (OCRs) were evaluated. For the process of respiration we used 1 mM, 2mM and 5 mM of IA; 250 μM, 500 μM and 750 μM of 4-OI and cells after 24 hours incubation with 50 μM DMI and 100 ng/ml LPS. To imitate respiration process the following substrates and inhibitors were used: 6 mM pyruvate + 6 mM malate, 2 mM ADP, 10.17 μM digitonin, 10 mM glutamate, 1 μM CAT, 1 μM CCCP, 10 mM succinate, 0.5 μM rotenone, 100 mM azide. Obtained results with OCRs were expressed as pmolO2/s*ml/106/ml cells. Experiments with isolated brain mitochondria were conducted using the same substrates and inhibitors. OCRs in isolated mitochondria were expressed as pmolO2/s*ml/0.5 mg mitochondrial protein. ROS generation was recorded in isolated mitochondria with 6 mM pyruvate, 6 mM malate and 2 mM ADP or 10 mM succinate + 5 μM rotenone in the well containing 0,25 mg/ml mitochondrial protein. Results. IA inhibits the I and II ETC complexes dependent OCRs respectively: 1 mM IA – 29.75% and 17.03%, 2 mM IA – 25.85% and 44.42%, 5 mM IA – 53.06% and 51.78%. IA inhibits mitochondrial respiration in a dose dependent manner. Similar to IA, 4-OI inhibits the I ETC complex dependent OCR by 43.64 ± 1.3% in 500-750 μM concentrations. 4-OI inhibits the II ETC complex dependent OCR by 58.52 ± 6.27% in 250-750 μM concentrations. DMI did not change OCR in cells respiring with the I and II ETC complexes. Also IA 5 mM concentration significantly decreases the I and II ETC complexes dependent ROS generation respectively by 41.34% and 39.14%. Conclusion. Itaconic acid and 4-octylitaconate reduces the I and II electron transport chain complexes dependent oxygen consumption rates in brain mitochondria. Dimethylitaconate has no such inhibitory efffect. Itaconic acid is also able to reduce ROS generation in brain mitochondria.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Lithuanian Universit...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Lithuanian Universit...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wegrzyn, Martin; Aust, Joana; Barnstorf, Larissa; Gippert, Magdalena; +15 Authors

    Condition-wise and block-wise maps from our manuscript "Thought experiment: decoding cognitive processes from the fMRI data of one individual"

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NeuroVault
    Other ORP type . 2018
    License: CC 0
    Data sources: NeuroVault
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NeuroVault
      Other ORP type . 2018
      License: CC 0
      Data sources: NeuroVault
  • Authors: Stanevičienė, Inga; Naginienė, Rima; Baranauskienė, Dalė; Vieželienė, Dalė;

    Background and aim: Aluminium (Al) causes toxic effects on various body organs and tissues, especially nervous tissue. Studies on animal models demonstrated changes in cognitive functions and morphological features of the central nervous system after consumption of water containing elevated concentrations of aluminium. This study was aimed to evaluate long-term effects of Al on mice body weight and brain mass and to determine concentrations of Al in mice brain and blood. Materials and methods: Experiments were done on 4-6-weeks old Balb C mice. Animals were divided into three groups: control group, low dose Al group (Al 50; 50 mg Al3+/kg bw/day), high dose Al group (Al 100; 100 mg Al3+/kg bw/day). Control mice were given tap water, whereas Al treated mice received AlCl3 in drinking water for 8 weeks. [...].

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Maddox, Christopher Dale;

    There are divergent claims concerning the broad cortical organization of speechrecognition. One model holds that speech perception and comprehension is governed by a left lateralized anterior temporal lobe (ATL) pathway. Another model argues that bilateral superior temporal regions are critically important, and, in fact, represent a lower level of processing that drives ATL activation in a bottom up fashion. These models were tested in a series of auditory fMRI experiments that gradually investigated lower levels of speech analysis. The experiments contrasted listening to clear monosyllabic words, pseudowords, sentences, and word lists with unintelligible spectrally rotated and time-reversed speech. In the first experiment, posterior temporal regions did not respond differentially to sentence versus word list stimuli, consistent with the idea that bilateral regions of the superior temporal plane support speech recognition at a lower (perhaps phonological) level. An area of the ATL centered around the superior temporal sulcus (STS) was activated more for sentences than word lists, indicating that the region may be involved in sentence-level operations. In the second experiment, this same region in the left hemisphere was activated more by monosyllabic words than rotated words. This suggests that the anterior focus is not exclusively attributable to sentence-level operations. In the third experiment, lexical status was found to differentially modulate anterior and posterior STS regions. There was more activation in the aSTS bilaterally for words than pseudowords, but these conditions did not lead to activation differences in the posterior region. It appears that anterior temporal speech-selective regions respond to lexical-semantic aspects of speech, whereas posterior temporal speech-selective areas are coding lower level phonemic information.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao eScholarship - Unive...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao eScholarship - Unive...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Koban, Leonie; Jepma, Marieke; López-Solà, Marina; Wager, Tor D.;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NeuroVault
    Other ORP type . 2019
    License: CC 0
    Data sources: NeuroVault
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NeuroVault
      Other ORP type . 2019
      License: CC 0
      Data sources: NeuroVault
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sandner, Magdalena; Lois, Giannis; Streit, Fabian; Zeier, Peter; +3 Authors

    Identifying individual differences in stress reactivity is of particular interest in the context of stress-related disorders and resilience. Previous studies already identified several factors mediating the individual stress response of the hypothalamus-pituitary-adrenal axis (HPA). However, the impact of long-term HPA axis activity on acute stress reactivity remains inconclusive. To investigate associations between long-term HPA axis variation and individual acute stress reactivity, we tested 40 healthy volunteers for affective, endocrine, physiological, and neural reactions to a modified, compact version of the established in-MR stress paradigm ScanSTRESS (ScanSTRESS-C). Hair cortisol concentrations (HCC) served as an integrative marker of long-term HPA axis activity. First, the ScanSTRESS-C version proved to be valid in evoking a subjective, endocrine, physiological, and neural stress response with enhanced self-reported negative affect and cortisol levels, increased heart rate as well as increased activation in the anterior insula and the dorso-anterior cingulate cortex (dACC). Second and interestingly, results indicated a lower neuroendocrine stress response in individuals with higher HCC: HCC was negatively correlated with the area under the curve (respect to increase; AUCi) of saliva cortisol and with a stress-related increase in dACC activity. The present study explicitly targeted the relationship between HCC and acute stress reactivity on multiple response levels, i.e. subjective, endocrine and neural stress responses. The lower stress reactivity in individuals with higher HCC levels indicates the need for further research evaluating the role of long-term HPA axis alterations in the context of vulnerability or immunization against acute stress and following stress-related impairments.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCISarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NARCIS
    Other ORP type . 2020
    Data sources: NARCIS
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCISarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NARCIS
      Other ORP type . 2020
      Data sources: NARCIS
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rahimpour Jounghani, Ali;

    Timing is an essential component of human actions, and is the foundation of any sort of sequential behavior, from picking up a glass to playing an instrument or dancing. Because of this, our understanding of how we represent time in the brain (i.e., the human timing system) critically relies on basic research on simple behaviors. Perception of temporal regularities is central to a wide range of basic actions, but also underpins abilities unique to humans such as the creation of complex musical scores. This dissertation is an in-depth examination of endogenously and exogenously guided timing behavior, and how context is a critical component of understanding rhythmic entrainment in humans. We previously validated “gold standard” functional magnetic resonance imaging (fMRI) findings on action-based timing behavior using functional near infrared spectroscopy (fNIRS) (Rahimpour et al., 2020). In particular, we observed significant hemodynamic responses in cortical areas in direct relation to the complexity of the behavior being performed. To do so, we probed multiple levels of contextual influence on action-based timing behavior and patterns of cortical activation as measured using fNIRS. Our findings highlighted several distinct, context-dependent parameters of specific timing behaviors. Here we further interrogate human timing abilities by introducing variations of our original experimental design, observing that subtle contextual variations have a significant impact on the degree of rhythmic entrainment given the presence/absence of metronomic input. We used electroencephalogram (EEG) to further validate our fNIRS findings, demonstrating that single trial neurobiological activity can be used to predict whether behavior is exogenously or endogenously guided. We also found that patterns of neural activity correspond to differential use of the internal timing system, and that specific differences in neural activity correlate with accuracy of action-based timing behavior. These findings emerged from our use of a novel deep learning approach to extract person-specific, neural-based features as predictors of behavioral performance. Finally, we examined whether fNIRS and EEG produced similar localization information, finding that the influence of training factors on cortical localization must be accounted for to make such comparisons.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Picado Rossi, Marisol;

    El trastorno por deficit de atención con hiperactividad (TDAH) es considerado uno de los trastornos psiquiátricos infantiles con mayor prevalencia, careacterizado por síntomas de inatención, hiperactividad e impulsividad. Hasta hace poco, se pensanba que los síntomas mejoraban con la edad, pero recientemente existe evidencia de que los síntomas del trastorno pueden prevalecer hasta la edad adulta. Un estudio reciente indicó que un 35% de los casos continuaban presentando el trastorno en la adultez, afectando aproximadamente entre un 3-7% de la población adulta. A pesar de que el substrato neurobiológico del TDAH no se conoce con exactitud, estudios geneticos, preclínicos y clínicos apuntan a que podría tratarse de alteraciones dopaminergicas y/o noradrenérgicas. Alteraciones en la actividad neural y el menor volumen de sustancia gris que se ha encontrado en estos pacientes en regiones relacionadas a la dopamina también corroboran dichos deficits. Adultos diagnosticados con TDAH suelen presentar deficits neuropsicológicos en cuanto a memoria de trabajo, atención y control inhibotorio. El modelo de doble vía de Sonuga Barke implica por lo menos dos endofenotipos, relativamente independientes pero no excluyentes el uno del otro. El primero se asocia más a deficits a nivel ejecutivo como el control inhibitorio, mientras que el segundo se realciona a lo que alteraciones motivaciones, principalmente la anticipación de la recompensa. Este modelo explica le heteroenidad del TDAH en términos de déficits cognitivos y motivacionales disociables, los cuales pueded afectar a algunos pacientes pero no a otros. Es importante señalar que recientemente se ha sugerido que el procesameinto temporal podría consituir un tecer componente nueropsicológicodisociabl del TDAH. Déficits en cuanto al procesamiento temporal se están estudiando en TDAH, y además, se ha evaluado su posible relación con la impulsividad, síntoma importante de este trastorno. A pesar de la influencia que los procesos motivaciones podrían tener en el funcionamiento cognitivo, pocos estudios han centrado en el substrato neuronal de los sistemas de motivación y temporales, y su implicación en la fisiopatología del TDAH. Por tanto, analizamos las imágenes RMf de 20 pacientes adultos con TDAH, no medicados y subtipo combinado, así como de 25 sujetos controles. Los datos se utilizaron para identificar y comparar la activación durante un paradigma de recompensa y discriminación temporal. El paradigma incluyó la prescencia de distractores durante la tarea para evaluar atención. Los resultados del análisis por regiones de interés indicó menor activación en el cerebelo izquierdo y derecho durante la tarera de recompensa/discriminación temporal en el grupo con TDAH. El cerebelo es una región implicada en alteraciones estructurales y funcionales en TDAH, y recientemente también se ha señalado su possible implicación como mediador en tareas de procesamiento temporal. Los análisis de whole-brain también inidcaron menor activación en el giro temporal superior, el cerebelo izquierdo y derecho, el giro fusiforme, el giro de Heschl, y el giro medio occipital en los pacientes. Contrariamente, se observó una mayor activación en los pacientes en el giro frontal inferior derecho y en el giro parietal superior izquierdo. Adicionalmente, los análisis por regiones de interés también mostraron menor actividad neural en ralación al estíimulo del distractor en el grupo con TDAH en la corteza prefrontal dorsolateral y en el giro precentral. En los análisis de whole-brain también se observó una menor activación en el giro postcentral izquierdo, el giro temporal izquierdo y el giro frontal izquierdo. Finalmente, se observó un aumento en la activación en los pacientes con TDAH en la corteza orbitofrontal derecha. Nuestros resultados aportan evidencia de que el procesamiento temporal, junto con procesos cognitivos como la atención, así como los procesos motivacionales relacionados con la recompensa, podrían representar un tercer componente neuropsicológico afectado en el TDAH. ADHD, conceived as one of the most prevalent childhood psychiatric disorders, is characterized by inattention, hyperactivity and impulsivity symptoms and estimate to affect 5% of worldwide population. Until recently, symptoms were thought to ameliorate with age. However, a recent 10 year follow-up study indicated that 35% of paediatric patients still meeting ADHD diagnostic criteria and it's been estimated that ADHD affects between 3 and 7% of adult population. Even thought the exact neurobiological substrate of ADHD still unclear, genetic, preclinical and clinical studies point to dopaminergic and/or noradrenergic alterations. Neural activity and grey matter volume decreases in dopamine related regions also corroborate such deficits. Adults diagnosed with this disorder are likely to neuropsychological deficits involving working memory, attention and inhibitory control. The multiple pathway model proposed by Sonuga-Barke implicates at least two relatively independent but not mutually exclusiv endophenotypes; those involving an executive functioning disruption such as inhibition control, and those more related with motivational system abnormalities, basically reward anticipation. Therefore, this model explains neuropsychological heterogeneity of ADHD in terms of dissociable cognitive and motivational deficits, each affecting some but not other patients. Importantly, it is been suggested that temporal processing might constitute a third dissociable neuropsychological component of ADHD. Recently, timing processing deficits are being studied in ADHD, and, furthermore, such abnormalities have been related with impulsiveness, a core symptom of ADHD. In spite of the influence that motivational and timing processes might have on cognitive functioning, only a few studies have focused on the neural substrate underpinning the motivational and timing systems and, specifically, their role in ADHD pathophysiology. Therefore, we analyzed functional magnetic resonance images (fMRI) of 20 un-medicated, combined, adult ADHD subjects and 25 healthy controls. Date sets were used to identify and compare the brain activation during a reward/time discrimination paradigm. The paradigm also included distractors during the task, in order to evaluate attention processes. Our results from the Regions of interest (ROIs) analysis indicated decreased brain activation in left and right cerebellum during the task that as compared to the control group. The cerebellum is key area of structural and functional abnormalities in ADHD, and, recently it has been implicated as one important mediator in time discrimination. Furthermore, whole brain analysis indicated decreased brain activity in right superior temporal gyrus, right left cerebellum, right fusiform gyrus, right Heschl's gyrus and left occipital middle gyrus in ADHD group as compared to controls. The opposite contrast showed increased activation levels in right frontal inferior gyrus and left superior parietal gyrus in the patients group. Additionally, ROIs analysis also showed reduced activity in relation to the distractor stimulus in the ADHD group in left DLPFC and the left precentral gyrus. The whole-brain analysis also shoewed a cluster of reduced activity located in the left post central gyrus, left inferior temporal gyrus and left inferior frontal gyrus. In the opposite contrast, we observed increased brain activity in the right orbitofrontal cortex in the patients group. Our results provide evidence that temporal processes, in addition to cognitve (i.e., attention) and motivational/emotional domains, might be a third dissociable neuropsychological component that affects ADHD.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Cross, Emily S.; Riddoch, Katie A.; Pratts, Jaydan; Titone, Simon; +2 Authors

    Cross, E. S., Riddoch, K. A., Pratts, J., Titone, S., Chaudhury, B., & Hortensius, R. (2019). A neurocognitive investigation of the impact of socialising with a robot on empathy for pain:. http://doi.org/10.1101/470534

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NeuroVault
    Other ORP type . 2020
    License: CC 0
    Data sources: NeuroVault
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NeuroVault
      Other ORP type . 2020
      License: CC 0
      Data sources: NeuroVault
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gordon, Brian A.; Friedrichsen, Karl; Brier, Matthew; Blazey, Tyler; +10 Authors
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NeuroVault
    Other ORP type . 2016
    License: CC 0
    Data sources: NeuroVault
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NeuroVault
      Other ORP type . 2016
      License: CC 0
      Data sources: NeuroVault
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vanagas, Tadas;

    Tyrimo tikslas. Ištirti itakoninės rūgšties poveikį smegenų audinio energijos apykaitos mechanizmams. Tyrimo uždaviniai. Įvertinti itakoninės rūgšties (IR), 4-oktilitakonato (4-OI) ir dimetilitakonato (DMI) poveikį nuo I – ojo ir II – ojo elektronų pernašos grandinės kompleksų (EPG) priklausomam deguonies suvartojimo greičiui. Įvertinti IR poveikį ROS gamybai. Metodai. Eksperimentams naudojamos pirminės žiurkių smegenėlių granulinio sluoksnio ląstelių kultūros, su kuriomis buvo atliekami respirometrijos tyrimai, t.y. matuojamas deguonies suvartojimo greitis (DSG). Kvėpavimo proceso vykdymui naudota IR – 1 mM, 2 mM ir 5 mM koncentracijomis, 4-OI – 250 μM, 500 μM ir 750 μM koncentracijomis ir ląstelės po 24 valandų inkubacijos su 50 μM DMI ir 100 ng/ml LPS. Tam kad vyktų kvėpavimo procesas buvo naudojami substratai: 6 mM piruvatas + 6 mM malatas, 2 mM ADP, 10.17 μM digitoninas, 10 mM glutamatas, 1 μM CAT, 1 μM CCCP, 10 mM sukcinatas, 0.5 μM rotenonas, 100 mM azidas. Gauti DSG išreikšti pmolO2/s*ml/106/ml ląstelių skaičiui. Eksperimentams su smegenų mitochondrijomis buvo naudojami tie patys substratai, o rezultatai išreikšti pmolO2/s*ml/0.5 mg mitochondrijų baltymo. ROS gamyba buvo registruojama naudojant izoliuotas mitochondrijos su 6 mM piruvato + 6 mM malato + 2 mM ADP arba su 10 mM sukcinato + 5 μM rotenono šulinėlyje su 0,25 mg/ml mitochondrijų baltymo. Rezultatai. IR slopina nuo I – ojo ir II – ojo EPG kompleksų priklausomą deguonies suvartojimo greitį atitinkamai: 1 mM koncentracija – 29.75% ir 17.03%, 2 mM IR – 25.85% ir 44.42%, 5 mM IR – 53.06% ir 51.78%. Nustatyta priklausomybė nuo IR koncentracijos. Kaip ir IR, taip pat ir 4-OI slopina nuo I – ojo EPG komplekso priklausomą DSG 43.64 ± 1.3% 500-750 μM koncentracijomis. 4-OI slopina nuo II – ojo EPG komplekso priklausomą DSG 58.52 ± 6.27% 250-750 μM koncentracijomis. DMI nekeičia DSG ląstelėse kvėpuojančiose su I – ojo ir II – ojo EPG kompleksų substratais. Taip pat IR 5 mM koncentracija reikšmingai mažina nuo I – ojo ir II – ojo EPG kompleksų priklausomą ROS gamybą atitinkamai 41.34% ir 39.14%. Išvados. Itakoninė rūgštis ir 4-oktilitakonatas slopina smegenų ląstelių mitochondrijų nuo I-ojo ir II-ojo elektronų pernašos grandinės kompleksų priklausomą deguonies suvartojimo greitį. Dimetilitakonatas slopinančiu poveikiu nepasižymi. Itakoninė rūgštis taip pat geba sumažinti ROS gamybą smegenų mitochondrijose. Aim. To investigate the effect of IA on the bioenergetic processess in the brain tissue. Objectives. To evaluate the effect of IA, 4-octylitaconate (4-OI) and dimethylitaconate (DMI) on the I and II electron transport chain (ETC) complex dependent oxygen consumption rates. To evaluate the effect of IA for ROS generation. Methods. Primary rat cerebellar granular cell (CGC) cultures were used for respirometry experiments where oxygen consumption rates (OCRs) were evaluated. For the process of respiration we used 1 mM, 2mM and 5 mM of IA; 250 μM, 500 μM and 750 μM of 4-OI and cells after 24 hours incubation with 50 μM DMI and 100 ng/ml LPS. To imitate respiration process the following substrates and inhibitors were used: 6 mM pyruvate + 6 mM malate, 2 mM ADP, 10.17 μM digitonin, 10 mM glutamate, 1 μM CAT, 1 μM CCCP, 10 mM succinate, 0.5 μM rotenone, 100 mM azide. Obtained results with OCRs were expressed as pmolO2/s*ml/106/ml cells. Experiments with isolated brain mitochondria were conducted using the same substrates and inhibitors. OCRs in isolated mitochondria were expressed as pmolO2/s*ml/0.5 mg mitochondrial protein. ROS generation was recorded in isolated mitochondria with 6 mM pyruvate, 6 mM malate and 2 mM ADP or 10 mM succinate + 5 μM rotenone in the well containing 0,25 mg/ml mitochondrial protein. Results. IA inhibits the I and II ETC complexes dependent OCRs respectively: 1 mM IA – 29.75% and 17.03%, 2 mM IA – 25.85% and 44.42%, 5 mM IA – 53.06% and 51.78%. IA inhibits mitochondrial respiration in a dose dependent manner. Similar to IA, 4-OI inhibits the I ETC complex dependent OCR by 43.64 ± 1.3% in 500-750 μM concentrations. 4-OI inhibits the II ETC complex dependent OCR by 58.52 ± 6.27% in 250-750 μM concentrations. DMI did not change OCR in cells respiring with the I and II ETC complexes. Also IA 5 mM concentration significantly decreases the I and II ETC complexes dependent ROS generation respectively by 41.34% and 39.14%. Conclusion. Itaconic acid and 4-octylitaconate reduces the I and II electron transport chain complexes dependent oxygen consumption rates in brain mitochondria. Dimethylitaconate has no such inhibitory efffect. Itaconic acid is also able to reduce ROS generation in brain mitochondria.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Lithuanian Universit...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Lithuanian Universit...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wegrzyn, Martin; Aust, Joana; Barnstorf, Larissa; Gippert, Magdalena; +15 Authors

    Condition-wise and block-wise maps from our manuscript "Thought experiment: decoding cognitive processes from the fMRI data of one individual"

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NeuroVault
    Other ORP type . 2018
    License: CC 0
    Data sources: NeuroVault
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NeuroVault
      Other ORP type . 2018
      License: CC 0
      Data sources: NeuroVault
  • Authors: Stanevičienė, Inga; Naginienė, Rima; Baranauskienė, Dalė; Vieželienė, Dalė;

    Background and aim: Aluminium (Al) causes toxic effects on various body organs and tissues, especially nervous tissue. Studies on animal models demonstrated changes in cognitive functions and morphological features of the central nervous system after consumption of water containing elevated concentrations of aluminium. This study was aimed to evaluate long-term effects of Al on mice body weight and brain mass and to determine concentrations of Al in mice brain and blood. Materials and methods: Experiments were done on 4-6-weeks old Balb C mice. Animals were divided into three groups: control group, low dose Al group (Al 50; 50 mg Al3+/kg bw/day), high dose Al group (Al 100; 100 mg Al3+/kg bw/day). Control mice were given tap water, whereas Al treated mice received AlCl3 in drinking water for 8 weeks. [...].

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Maddox, Christopher Dale;

    There are divergent claims concerning the broad cortical organization of speechrecognition. One model holds that speech perception and comprehension is governed by a left lateralized anterior temporal lobe (ATL) pathway. Another model argues that bilateral superior temporal regions are critically important, and, in fact, represent a lower level of processing that drives ATL activation in a bottom up fashion. These models were tested in a series of auditory fMRI experiments that gradually investigated lower levels of speech analysis. The experiments contrasted listening to clear monosyllabic words, pseudowords, sentences, and word lists with unintelligible spectrally rotated and time-reversed speech. In the first experiment, posterior temporal regions did not respond differentially to sentence versus word list stimuli, consistent with the idea that bilateral regions of the superior temporal plane support speech recognition at a lower (perhaps phonological) level. An area of the ATL centered around the superior temporal sulcus (STS) was activated more for sentences than word lists, indicating that the region may be involved in sentence-level operations. In the second experiment, this same region in the left hemisphere was activated more by monosyllabic words than rotated words. This suggests that the anterior focus is not exclusively attributable to sentence-level operations. In the third experiment, lexical status was found to differentially modulate anterior and posterior STS regions. There was more activation in the aSTS bilaterally for words than pseudowords, but these conditions did not lead to activation differences in the posterior region. It appears that anterior temporal speech-selective regions respond to lexical-semantic aspects of speech, whereas posterior temporal speech-selective areas are coding lower level phonemic information.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao eScholarship - Unive...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao eScholarship - Unive...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Koban, Leonie; Jepma, Marieke; López-Solà, Marina; Wager, Tor D.;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NeuroVault
    Other ORP type . 2019
    License: CC 0
    Data sources: NeuroVault
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroVaultarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NeuroVault
      Other ORP type . 2019
      License: CC 0
      Data sources: NeuroVault
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sandner, Magdalena; Lois, Giannis; Streit, Fabian; Zeier, Peter; +3 Authors

    Identifying individual differences in stress reactivity is of particular interest in the context of stress-related disorders and resilience. Previous studies already identified several factors mediating the individual stress response of the hypothalamus-pituitary-adrenal axis (HPA). However, the impact of long-term HPA axis activity on acute stress reactivity remains inconclusive. To investigate associations between long-term HPA axis variation and individual acute stress reactivity, we tested 40 healthy volunteers for affective, endocrine, physiological, and neural reactions to a modified, compact version of the established in-MR stress paradigm ScanSTRESS (ScanSTRESS-C). Hair cortisol concentrations (HCC) served as an integrative marker of long-term HPA axis activity. First, the ScanSTRESS-C version proved to be valid in evoking a subjective, endocrine, physiological, and neural stress response with enhanced self-reported negative affect and cortisol levels, increased heart rate as well as increased activation in the anterior insula and the dorso-anterior cingulate cortex (dACC). Second and interestingly, results indicated a lower neuroendocrine stress response in individuals with higher HCC: HCC was negatively correlated with the area under the curve (respect to increase; AUCi) of saliva cortisol and with a stress-related increase in dACC activity. The present study explicitly targeted the relationship between HCC and acute stress reactivity on multiple response levels, i.e. subjective, endocrine and neural stress responses. The lower stress reactivity in individuals with higher HCC levels indicates the need for further research evaluating the role of long-term HPA axis alterations in the context of vulnerability or immunization against acute stress and following stress-related impairments.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCISarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NARCIS
    Other ORP type . 2020
    Data sources: NARCIS
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCISarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NARCIS
      Other ORP type . 2020
      Data sources: NARCIS
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rahimpour Jounghani, Ali;

    Timing is an essential component of human actions, and is the foundation of any sort of sequential behavior, from picking up a glass to playing an instrument or dancing. Because of this, our understanding of how we represent time in the brain (i.e., the human timing system) critically relies on basic research on simple behaviors. Perception of temporal regularities is central to a wide range of basic actions, but also underpins abilities unique to humans such as the creation of complex musical scores. This dissertation is an in-depth examination of endogenously and exogenously guided timing behavior, and how context is a critical component of understanding rhythmic entrainment in humans. We previously validated “gold standard” functional magnetic resonance imaging (fMRI) findings on action-based timing behavior using functional near infrared spectroscopy (fNIRS) (Rahimpour et al., 2020). In particular, we observed significant hemodynamic responses in cortical areas in direct relation to the complexity of the behavior being performed. To do so, we probed multiple levels of contextual influence on action-based timing behavior and patterns of cortical activation as measured using fNIRS. Our findings highlighted several distinct, context-dependent parameters of specific timing behaviors. Here we further interrogate human timing abilities by introducing variations of our original experimental design, observing that subtle contextual variations have a significant impact on the degree of rhythmic entrainment given the presence/absence of metronomic input. We used electroencephalogram (EEG) to further validate our fNIRS findings, demonstrating that single trial neurobiological activity can be used to predict whether behavior is exogenously or endogenously guided. We also found that patterns of neural activity correspond to differential use of the internal timing system, and that specific differences in neural activity correlate with accuracy of action-based timing behavior. These findings emerged from our use of a novel deep learning approach to extract person-specific, neural-based features as predictors of behavioral performance. Finally, we examined whether fNIRS and EEG produced similar localization information, finding that the influence of training factors on cortical localization must be accounted for to make such comparisons.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage