Filters
Clear AllLoading
apps Other research product2018 English EC | HYPOXEC| HYPOXFriedrich, J.; Janssen, F.; Aleynik, D.; Bange, H. W.; Boltacheva, N.; Çagatay, M. N.; Dale, A. W.; Etiope, G.; Erdem, Z.; Geraga, M.; Gilli, A.; Gomoiu, M. T.; Hall, P. O. J.; Hansson, D.; He, Y.; Holtappels, M.; Kirf, M. K.; Kononets, M.; Konovalov, S.; Lichtschlag, A.; Livingstone, D. M.; Marinaro, G.; Mazlumyan, S.; Naeher, S.; North, R. P.; Papatheodorou, G.; Pfannkuche, O.; Prien, R.; Rehder, G.; Schubert, C. J.; Soltwedel, T.; Sommer, S.; Stahl, H.; Stanev, E. V.; Teaca, A.; Tengberg, A.; Waldmann, C.; Wehrli, B.; Wenzhöfer, F.;In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", http://www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::234344961e58b06d658d35171518bb32&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::234344961e58b06d658d35171518bb32&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English EC | AquaSpace, EC | DEVOTES, FCT | SFRH/BD/78354/2011 +2 projectsEC| AquaSpace ,EC| DEVOTES ,FCT| SFRH/BD/78354/2011 ,FCT| SFRH/BD/78356/2011 ,EC| AQUA-USERSGoela, Priscila; Cristina, Sónia; Kajiyama, Tamito; Icely, John; Moore, Gerald; Fragoso, Bruno; Newton, Alice;In this study, Algal Pigment Index 2 (API2) is investigated in Sagres, an area located in the Atlantic off the southwestern Iberian Peninsula. Standard results provided by the MEdium Resolution Image Spectrometer (MERIS) ocean colour sensor were compared with alternative data products, determined through a regional inversion scheme, using both MERIS and in situ remote sensing reflectances (Rrs) as input data. The reference quantity for performance assessment is in situ total chlorophyll a (TChl a) concentration estimated through a phytoplankton absorption coefficient (i.e. equivalent to API2). Additional comparison of data products has also been addressed for TChl a concentration determined by high-performance liquid chromatography. The MERIS matchup analysis revealed a systematic underestimation of TChl a, which was confirmed with an independent comparison of product map analysis. The study demonstrates the importance of regional algorithms for the study area that could complement upcoming standard results of the current Sentinel-3/OLCI space mission.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::55e977a1d2531b13c78bc391abe25dc1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::55e977a1d2531b13c78bc391abe25dc1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English NSF | Collaborative Research: T..., EC | ECOPOTENTIAL, NSF | Research Coordination Net... +1 projectsNSF| Collaborative Research: The Distributed Biological Observatory (DBO)-A Change Detection Array in the Pacific Arctic Region ,EC| ECOPOTENTIAL ,NSF| Research Coordination Networks (RCN): Sustained Multidisciplinary Ocean Observations ,EC| ODYSSEAAuthors: Muller-Karger, Frank E.; Miloslavich, Patricia; Bax, Nicholas J.; Simmons, Samantha; +32 AuthorsMuller-Karger, Frank E.; Miloslavich, Patricia; Bax, Nicholas J.; Simmons, Samantha; Costello, Mark J.; Pinto, Isabel Sousa; Canonico, Gabrielle; Turner, Woody; Gill, Michael; Montes, Enrique; Best, Benjamin D.; Pearlman, Jay; Halpin, Patrick; Dunn, Daniel; Benson, Abigail; Martin, Corinne S.; Weatherdon, Lauren V.; Appeltans, Ward; Provoost, Pieter; Klein, Eduardo; Kelble, Christopher R.; Miller, Robert J.; Chavez, Francisco P.; Iken, Katrin; Chiba, Sanae; Obura, David; Navarro, Laetitia M.; Pereira, Henrique M.; Allain, Valerie; Batten, Sonia; Benedetti-Checchi, Lisandro; Duffy, J. Emmett; Kudela, Raphael M.; Rebelo, Lisa-Maria; Shin, Yunne; Geller, Gary;handle: 11329/1340
Measurements of the status and trends of key indicators for the ocean and marine life are required to inform policy and management in the context of growing human uses of marine resources, coastal development, and climate change. Two synergistic efforts identify specific priority variables for monitoring: Essential Ocean Variables (EOVs) through the Global Ocean Observing System (GOOS), and Essential Biodiversity Variables (EBVs) from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (see Data Sheet 1 in Supplementary Materials for a glossary of acronyms). Both systems support reporting against internationally agreed conventions and treaties. GOOS, established under the auspices of the Intergovernmental Oceanographic Commission (IOC), plays a leading role in coordinating global monitoring of the ocean and in the definition of EOVs. GEO BON is a global biodiversity observation network that coordinates observations to enhance management of the world’s biodiversity and promote both the awareness and accounting of ecosystem services. Convergence and agreement between these two efforts are required to streamline existing and new marine observation programs to advance scientific knowledge effectively and to support the sustainable use and management of ocean spaces and resources. In this context, the Marine Biodiversity Observation Network (MBON), a thematic component of GEO BON, is collaborating with GOOS, the Ocean Biogeographic Information System (OBIS), and the Integrated Marine Biosphere Research (IMBeR) project to ensure that EBVs and EOVs are complementary, representing alternative uses of a common set of scientific measurements. This work is informed by the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM), an intergovernmental body of technical experts that helps international coordination on best practices for observing, data management and services, combined with capacity development expertise. Characterizing biodiversity and understanding its drivers will require incorporation of observations fromtraditional andmolecular taxonomy, animal tagging and tracking efforts, ocean biogeochemistry, and ocean observatory initiatives including the deep ocean and seafloor. The partnership between large-scale ocean observing and product distribution initiatives (MBON, OBIS, JCOMM, and GOOS) is an expedited, effective way to support international policy-level assessments (e.g., the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services or IPBES), along with the implementation of international development goals (e.g., the United Nations Sustainable Development Goals). Refereed 14 Manual (incl. handbook, guide, cookbook etc) 2018-06-27
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11329/1340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11329/1340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu- FCT| SFRH/BPD/79801/2011 ,NSERC ,EC| CORALFISH ,EC| HERMIONEMorato, T.; Kvile, K. Ø.; Taranto, G. H.; Tempera, F.; Narayanaswamy, B. E.; Hebbeln, D.; Menezes, G. M.; Wienberg, C.; Santos, R. S.; Pitcher, T. J.;
This work aims at characterising the seamount physiography and biology in the OSPAR Convention limits (north-east Atlantic Ocean) and Mediterranean Sea. We first inferred potential abundance, location and morphological characteristics of seamounts, and secondly, summarized the existing biological, geological and oceanographic in situ research, identifying examples of well-studied seamounts. Our study showed that the seamount population in the OSPAR area (north-east Atlantic) and in the Mediterranean Sea is large with around 557 and 101 seamount-like features, respectively. Similarly, seamounts occupy large areas of about 616 000 km2 in the OSPAR region and of about 89 500 km2 in the Mediterranean Sea. The presence of seamounts in the north-east Atlantic has been known since the late 19th century, but overall knowledge regarding seamount ecology and geology is still relatively poor. Only 37 seamounts in the OSPAR area (3.5% of all seamounts in the region), 22 in the Mediterranean Sea (9.2% of all seamounts in the region) and 25 in the north-east Atlantic south of the OSPAR area have in situ information. Seamounts mapped in both areas are in general very heterogeneous, showing diverse geophysical characteristics. These differences will likely affect the biological diversity and production of resident and associated organisms.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::3bc80fea6971670a1fdc7e9907eeba64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::3bc80fea6971670a1fdc7e9907eeba64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu apps Other research productkeyboard_double_arrow_right Collection 2018 EnglishPANGAEA EC | ERA-PLANET, NSERCEC| ERA-PLANET ,NSERCAuthors: Beamish, Alison Leslie;Beamish, Alison Leslie;Ground-based spectroscopy measurements acquired systematically within the Toolik Vegetation Grid in the 2016 growing season. All data were collected in a subset of 1 x 1 m long-term monitoring plots representing three distinct vegetation communities three times representing early, peak and late season. Spectral data were acquired using a GER 1500 field spectrometer (350-1050 nm; 512 bands, spectral resolution 3 nm, spectral sampling 1.5 nm, and 8! field of view). Spectra were collected under clear weather conditions at the highest solar zenith angle between 10:00 and 14:00 local time. Data were collected at nadir approximately 1 m off the ground resulting in a Ground Instantaneous Field of View (GIFOV) of approximately 15 cm in diameter. Nine point measurements of upwelling radiance (Lup) were collected in each plot and averaged to characterize the spectral variability and to reduce noise. Downwelling radiance (Ldown) was measured as the reflectance from a white Spectralon© plate. Surface reflectance (R) was processed as Lup/Ldown x 100 (0-100%). Reflectance spectra were preprocessed with a Savitzky-Golay smoothing filter (n = 11) and subset to 400-985 nm to remove sensor noise at the edges of the radiometer detector. Digital camera data were acquired using a consumer-grade camera (Panasonic DM3 LMX, Japan) approximately 1 m off the ground with a white frame for registration of off nadir images. For detailed definitions of the RGB indices see metadata.docx. Leaves and stems of the dominant vascular species in a subset of the sampled plots were collected at early, peak, and late season for chlorophyll and carotenoid analysis.Samples were placed in porous tea bags and preserved in a silica gel desiccant in an opaque container for up to 3 months until pigment extraction (Esteban et al. 2009, doi:10.1007/s11120-009-9468-5). Each sample was homogenized by grinding with a mortar and pestle. Approximately 1.00 mg (+/- 0.05 mg) of homogenized sample was placed into a vial with 2 ml of dimethylformamide (DMF). Vials were then wrapped in aluminum foil to eliminate any degradation of pigments due to UV light and stored in a fridge (4C) for 24 hrs. Samples were measured into a cuvette prior to spectrophotometric analysis. Bulk pigments concentrations were then estimated using a spectrophotometer measuring absorption at 646.8, 663.8 and 480 nm (Porra et al. 1989, doi:10.1016/S0005-2728(89)80347-0) . Absorbance (A) values at specific wavelengths were transformed into µg/mg concentrations of chlorophyll a, Chla, chlorophyll b, Chlb, total chlorophyll, Chl, carotenoids, Car (for equations see metadata.docx). Pigment concentration was calculated as the average concentration of the dominant species in each plot. mean_"pigment" represents the mean of all biomass from each vegetation community and sd_"pigment" represents the standard deviation of each vegetation community.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::259c64228a9b077995053533a74c1fc0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::259c64228a9b077995053533a74c1fc0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 EC | HYPOXEC| HYPOXNaeher Sebastian; Geraga Maria; Papatheodorou George; Ferentinos George; Kaberi Helen; Schubert Carsten J;The evolution of environmental changes during the last decades and the impact on the living biomass in the western part of Amvrakikos Gulf was investigated using abundances and species distributions of benthic foraminifera and lipid biomarker concentrations. These proxies indicated that the gulf has markedly changed due to eutrophication. Eutrophication has led to a higher productivity, a higher bacterial biomass, shifts towards opportunistic and tolerant benthic foraminifera species (e.g. Bulimina elongata, Nonionella turgida, Textularia agglutinans, Ammonia tepida) and a lower benthic species density. Close to the Preveza Strait (connection between the gulf and the Ionian Sea), the benthic assemblages were more diversified under more oxygenated conditions. Sea grass meadows largely contributed to the organic matter at this sampling site. The occurrence of isorenieratane, chlorobactane and lycopane supported by oxygen monitoring data indicated that anoxic (and partly euxinic) conditions prevailed seasonally throughout the western part of the gulf with more severe oxygen depletion towards the east. Increased surface water temperatures have led to a higher stratification, which reduced oxygen resupply to bottom waters. Altogether, these developments led to mass mortality events and ecosystem decline in Amvrakikos Gulf.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::38dc1de85d79ae85b1622dda6e500861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::38dc1de85d79ae85b1622dda6e500861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English EC | MEGAPOLIEC| MEGAPOLIRoscoe, H. K.; Roozendael, M.; Fayt, C.; Piesanie, A.; Abuhassan, N.; Adams, C.; Akrami, M.; Cede, A.; Chong, J.; Clémer, K.; Friess, U.; Gil Ojeda, M.; Goutail, F.; Graves, R.; Griesfeller, A.; Grossmann, K.; Hemerijckx, G.; Hendrick, F.; Herman, J.; Hermans, C.; Irie, H.; Johnston, P. V.; Kanaya, Y.; Kreher, K.; Leigh, R.; Merlaud, A.; Mount, G. H.; Navarro, M.; Oetjen, H.; Pazmino, A.; Perez-Camacho, M.; Peters, E.; Pinardi, G.; Puentedura, O.; Richter, A.; Schönhardt, A.; Shaiganfar, R.; Spinei, E.; Strong, K.; Takashima, H.; Vlemmix, T.; Vrekoussis, M.; Wagner, T.; Wittrock, F.; Yela, M.; Yilmaz, S.; Boersma, F.; Hains, J.; Kroon, M.; Piters, A.; Kim, Y. J.;In June 2009, 22 spectrometers from 14 institutes measured tropospheric and stratospheric NO2 from the ground for more than 11 days during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI), at Cabauw, NL (51.97° N, 4.93° E). All visible instruments used a common wavelength range and set of cross sections for the spectral analysis. Most of the instruments were of the multi-axis design with analysis by differential spectroscopy software (MAX-DOAS), whose non-zenith slant columns were compared by examining slopes of their least-squares straight line fits to mean values of a selection of instruments, after taking 30-min averages. Zenith slant columns near twilight were compared by fits to interpolated values of a reference instrument, then normalised by the mean of the slopes of the best instruments. For visible MAX-DOAS instruments, the means of the fitted slopes for NO2 and O4 of all except one instrument were within 10% of unity at almost all non-zenith elevations, and most were within 5%. Values for UV MAX-DOAS instruments were almost as good, being 12% and 7%, respectively. For visible instruments at zenith near twilight, the means of the fitted slopes of all instruments were within 5% of unity. This level of agreement is as good as that of previous intercomparisons, despite the site not being ideal for zenith twilight measurements. It bodes well for the future of measurements of tropospheric NO2, as previous intercomparisons were only for zenith instruments focussing on stratospheric NO2, with their longer heritage.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::6a7796fb329fc7884cb3f9e02c7930ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::6a7796fb329fc7884cb3f9e02c7930ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research product2018 English EC | HYPOXEC| HYPOXFriedrich, J.; Janssen, F.; Aleynik, D.; Bange, H. W.; Boltacheva, N.; Çagatay, M. N.; Dale, A. W.; Etiope, G.; Erdem, Z.; Geraga, M.; Gilli, A.; Gomoiu, M. T.; Hall, P. O. J.; Hansson, D.; He, Y.; Holtappels, M.; Kirf, M. K.; Kononets, M.; Konovalov, S.; Lichtschlag, A.; Livingstone, D. M.; Marinaro, G.; Mazlumyan, S.; Naeher, S.; North, R. P.; Papatheodorou, G.; Pfannkuche, O.; Prien, R.; Rehder, G.; Schubert, C. J.; Soltwedel, T.; Sommer, S.; Stahl, H.; Stanev, E. V.; Teaca, A.; Tengberg, A.; Waldmann, C.; Wehrli, B.; Wenzhöfer, F.;In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", http://www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::234344961e58b06d658d35171518bb32&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::234344961e58b06d658d35171518bb32&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English EC | AquaSpace, EC | DEVOTES, FCT | SFRH/BD/78354/2011 +2 projectsEC| AquaSpace ,EC| DEVOTES ,FCT| SFRH/BD/78354/2011 ,FCT| SFRH/BD/78356/2011 ,EC| AQUA-USERSGoela, Priscila; Cristina, Sónia; Kajiyama, Tamito; Icely, John; Moore, Gerald; Fragoso, Bruno; Newton, Alice;In this study, Algal Pigment Index 2 (API2) is investigated in Sagres, an area located in the Atlantic off the southwestern Iberian Peninsula. Standard results provided by the MEdium Resolution Image Spectrometer (MERIS) ocean colour sensor were compared with alternative data products, determined through a regional inversion scheme, using both MERIS and in situ remote sensing reflectances (Rrs) as input data. The reference quantity for performance assessment is in situ total chlorophyll a (TChl a) concentration estimated through a phytoplankton absorption coefficient (i.e. equivalent to API2). Additional comparison of data products has also been addressed for TChl a concentration determined by high-performance liquid chromatography. The MERIS matchup analysis revealed a systematic underestimation of TChl a, which was confirmed with an independent comparison of product map analysis. The study demonstrates the importance of regional algorithms for the study area that could complement upcoming standard results of the current Sentinel-3/OLCI space mission.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::55e977a1d2531b13c78bc391abe25dc1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::55e977a1d2531b13c78bc391abe25dc1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English NSF | Collaborative Research: T..., EC | ECOPOTENTIAL, NSF | Research Coordination Net... +1 projectsNSF| Collaborative Research: The Distributed Biological Observatory (DBO)-A Change Detection Array in the Pacific Arctic Region ,EC| ECOPOTENTIAL ,NSF| Research Coordination Networks (RCN): Sustained Multidisciplinary Ocean Observations ,EC| ODYSSEAAuthors: Muller-Karger, Frank E.; Miloslavich, Patricia; Bax, Nicholas J.; Simmons, Samantha; +32 AuthorsMuller-Karger, Frank E.; Miloslavich, Patricia; Bax, Nicholas J.; Simmons, Samantha; Costello, Mark J.; Pinto, Isabel Sousa; Canonico, Gabrielle; Turner, Woody; Gill, Michael; Montes, Enrique; Best, Benjamin D.; Pearlman, Jay; Halpin, Patrick; Dunn, Daniel; Benson, Abigail; Martin, Corinne S.; Weatherdon, Lauren V.; Appeltans, Ward; Provoost, Pieter; Klein, Eduardo; Kelble, Christopher R.; Miller, Robert J.; Chavez, Francisco P.; Iken, Katrin; Chiba, Sanae; Obura, David; Navarro, Laetitia M.; Pereira, Henrique M.; Allain, Valerie; Batten, Sonia; Benedetti-Checchi, Lisandro; Duffy, J. Emmett; Kudela, Raphael M.; Rebelo, Lisa-Maria; Shin, Yunne; Geller, Gary;handle: 11329/1340
Measurements of the status and trends of key indicators for the ocean and marine life are required to inform policy and management in the context of growing human uses of marine resources, coastal development, and climate change. Two synergistic efforts identify specific priority variables for monitoring: Essential Ocean Variables (EOVs) through the Global Ocean Observing System (GOOS), and Essential Biodiversity Variables (EBVs) from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (see Data Sheet 1 in Supplementary Materials for a glossary of acronyms). Both systems support reporting against internationally agreed conventions and treaties. GOOS, established under the auspices of the Intergovernmental Oceanographic Commission (IOC), plays a leading role in coordinating global monitoring of the ocean and in the definition of EOVs. GEO BON is a global biodiversity observation network that coordinates observations to enhance management of the world’s biodiversity and promote both the awareness and accounting of ecosystem services. Convergence and agreement between these two efforts are required to streamline existing and new marine observation programs to advance scientific knowledge effectively and to support the sustainable use and management of ocean spaces and resources. In this context, the Marine Biodiversity Observation Network (MBON), a thematic component of GEO BON, is collaborating with GOOS, the Ocean Biogeographic Information System (OBIS), and the Integrated Marine Biosphere Research (IMBeR) project to ensure that EBVs and EOVs are complementary, representing alternative uses of a common set of scientific measurements. This work is informed by the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM), an intergovernmental body of technical experts that helps international coordination on best practices for observing, data management and services, combined with capacity development expertise. Characterizing biodiversity and understanding its drivers will require incorporation of observations fromtraditional andmolecular taxonomy, animal tagging and tracking efforts, ocean biogeochemistry, and ocean observatory initiatives including the deep ocean and seafloor. The partnership between large-scale ocean observing and product distribution initiatives (MBON, OBIS, JCOMM, and GOOS) is an expedited, effective way to support international policy-level assessments (e.g., the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services or IPBES), along with the implementation of international development goals (e.g., the United Nations Sustainable Development Goals). Refereed 14 Manual (incl. handbook, guide, cookbook etc) 2018-06-27
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11329/1340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11329/1340&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu- FCT| SFRH/BPD/79801/2011 ,NSERC ,EC| CORALFISH ,EC| HERMIONEMorato, T.; Kvile, K. Ø.; Taranto, G. H.; Tempera, F.; Narayanaswamy, B. E.; Hebbeln, D.; Menezes, G. M.; Wienberg, C.; Santos, R. S.; Pitcher, T. J.;
This work aims at characterising the seamount physiography and biology in the OSPAR Convention limits (north-east Atlantic Ocean) and Mediterranean Sea. We first inferred potential abundance, location and morphological characteristics of seamounts, and secondly, summarized the existing biological, geological and oceanographic in situ research, identifying examples of well-studied seamounts. Our study showed that the seamount population in the OSPAR area (north-east Atlantic) and in the Mediterranean Sea is large with around 557 and 101 seamount-like features, respectively. Similarly, seamounts occupy large areas of about 616 000 km2 in the OSPAR region and of about 89 500 km2 in the Mediterranean Sea. The presence of seamounts in the north-east Atlantic has been known since the late 19th century, but overall knowledge regarding seamount ecology and geology is still relatively poor. Only 37 seamounts in the OSPAR area (3.5% of all seamounts in the region), 22 in the Mediterranean Sea (9.2% of all seamounts in the region) and 25 in the north-east Atlantic south of the OSPAR area have in situ information. Seamounts mapped in both areas are in general very heterogeneous, showing diverse geophysical characteristics. These differences will likely affect the biological diversity and production of resident and associated organisms.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::3bc80fea6971670a1fdc7e9907eeba64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::3bc80fea6971670a1fdc7e9907eeba64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu apps Other research productkeyboard_double_arrow_right Collection 2018 EnglishPANGAEA EC | ERA-PLANET, NSERCEC| ERA-PLANET ,NSERCAuthors: Beamish, Alison Leslie;Beamish, Alison Leslie;Ground-based spectroscopy measurements acquired systematically within the Toolik Vegetation Grid in the 2016 growing season. All data were collected in a subset of 1 x 1 m long-term monitoring plots representing three distinct vegetation communities three times representing early, peak and late season. Spectral data were acquired using a GER 1500 field spectrometer (350-1050 nm; 512 bands, spectral resolution 3 nm, spectral sampling 1.5 nm, and 8! field of view). Spectra were collected under clear weather conditions at the highest solar zenith angle between 10:00 and 14:00 local time. Data were collected at nadir approximately 1 m off the ground resulting in a Ground Instantaneous Field of View (GIFOV) of approximately 15 cm in diameter. Nine point measurements of upwelling radiance (Lup) were collected in each plot and averaged to characterize the spectral variability and to reduce noise. Downwelling radiance (Ldown) was measured as the reflectance from a white Spectralon© plate. Surface reflectance (R) was processed as Lup/Ldown x 100 (0-100%). Reflectance spectra were preprocessed with a Savitzky-Golay smoothing filter (n = 11) and subset to 400-985 nm to remove sensor noise at the edges of the radiometer detector. Digital camera data were acquired using a consumer-grade camera (Panasonic DM3 LMX, Japan) approximately 1 m off the ground with a white frame for registration of off nadir images. For detailed definitions of the RGB indices see metadata.docx. Leaves and stems of the dominant vascular species in a subset of the sampled plots were collected at early, peak, and late season for chlorophyll and carotenoid analysis.Samples were placed in porous tea bags and preserved in a silica gel desiccant in an opaque container for up to 3 months until pigment extraction (Esteban et al. 2009, doi:10.1007/s11120-009-9468-5). Each sample was homogenized by grinding with a mortar and pestle. Approximately 1.00 mg (+/- 0.05 mg) of homogenized sample was placed into a vial with 2 ml of dimethylformamide (DMF). Vials were then wrapped in aluminum foil to eliminate any degradation of pigments due to UV light and stored in a fridge (4C) for 24 hrs. Samples were measured into a cuvette prior to spectrophotometric analysis. Bulk pigments concentrations were then estimated using a spectrophotometer measuring absorption at 646.8, 663.8 and 480 nm (Porra et al. 1989, doi:10.1016/S0005-2728(89)80347-0) . Absorbance (A) values at specific wavelengths were transformed into µg/mg concentrations of chlorophyll a, Chla, chlorophyll b, Chlb, total chlorophyll, Chl, carotenoids, Car (for equations see metadata.docx). Pigment concentration was calculated as the average concentration of the dominant species in each plot. mean_"pigment" represents the mean of all biomass from each vegetation community and sd_"pigment" represents the standard deviation of each vegetation community.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::259c64228a9b077995053533a74c1fc0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::259c64228a9b077995053533a74c1fc0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 EC | HYPOXEC| HYPOXNaeher Sebastian; Geraga Maria; Papatheodorou George; Ferentinos George; Kaberi Helen; Schubert Carsten J;The evolution of environmental changes during the last decades and the impact on the living biomass in the western part of Amvrakikos Gulf was investigated using abundances and species distributions of benthic foraminifera and lipid biomarker concentrations. These proxies indicated that the gulf has markedly changed due to eutrophication. Eutrophication has led to a higher productivity, a higher bacterial biomass, shifts towards opportunistic and tolerant benthic foraminifera species (e.g. Bulimina elongata, Nonionella turgida, Textularia agglutinans, Ammonia tepida) and a lower benthic species density. Close to the Preveza Strait (connection between the gulf and the Ionian Sea), the benthic assemblages were more diversified under more oxygenated conditions. Sea grass meadows largely contributed to the organic matter at this sampling site. The occurrence of isorenieratane, chlorobactane and lycopane supported by oxygen monitoring data indicated that anoxic (and partly euxinic) conditions prevailed seasonally throughout the western part of the gulf with more severe oxygen depletion towards the east. Increased surface water temperatures have led to a higher stratification, which reduced oxygen resupply to bottom waters. Altogether, these developments led to mass mortality events and ecosystem decline in Amvrakikos Gulf.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::38dc1de85d79ae85b1622dda6e500861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::38dc1de85d79ae85b1622dda6e500861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English EC | MEGAPOLIEC| MEGAPOLIRoscoe, H. K.; Roozendael, M.; Fayt, C.; Piesanie, A.; Abuhassan, N.; Adams, C.; Akrami, M.; Cede, A.; Chong, J.; Clémer, K.; Friess, U.; Gil Ojeda, M.; Goutail, F.; Graves, R.; Griesfeller, A.; Grossmann, K.; Hemerijckx, G.; Hendrick, F.; Herman, J.; Hermans, C.; Irie, H.; Johnston, P. V.; Kanaya, Y.; Kreher, K.; Leigh, R.; Merlaud, A.; Mount, G. H.; Navarro, M.; Oetjen, H.; Pazmino, A.; Perez-Camacho, M.; Peters, E.; Pinardi, G.; Puentedura, O.; Richter, A.; Schönhardt, A.; Shaiganfar, R.; Spinei, E.; Strong, K.; Takashima, H.; Vlemmix, T.; Vrekoussis, M.; Wagner, T.; Wittrock, F.; Yela, M.; Yilmaz, S.; Boersma, F.; Hains, J.; Kroon, M.; Piters, A.; Kim, Y. J.;In June 2009, 22 spectrometers from 14 institutes measured tropospheric and stratospheric NO2 from the ground for more than 11 days during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI), at Cabauw, NL (51.97° N, 4.93° E). All visible instruments used a common wavelength range and set of cross sections for the spectral analysis. Most of the instruments were of the multi-axis design with analysis by differential spectroscopy software (MAX-DOAS), whose non-zenith slant columns were compared by examining slopes of their least-squares straight line fits to mean values of a selection of instruments, after taking 30-min averages. Zenith slant columns near twilight were compared by fits to interpolated values of a reference instrument, then normalised by the mean of the slopes of the best instruments. For visible MAX-DOAS instruments, the means of the fitted slopes for NO2 and O4 of all except one instrument were within 10% of unity at almost all non-zenith elevations, and most were within 5%. Values for UV MAX-DOAS instruments were almost as good, being 12% and 7%, respectively. For visible instruments at zenith near twilight, the means of the fitted slopes of all instruments were within 5% of unity. This level of agreement is as good as that of previous intercomparisons, despite the site not being ideal for zenith twilight measurements. It bodes well for the future of measurements of tropospheric NO2, as previous intercomparisons were only for zenith instruments focussing on stratospheric NO2, with their longer heritage.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::6a7796fb329fc7884cb3f9e02c7930ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::6a7796fb329fc7884cb3f9e02c7930ee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu