In this article, the authors investigate the system of Schr odinger and Klein-Gordon equations with Yukawa coupling. They rst prove the existence of pullback attractor and construct a family of invariant Borel probability measures. Then they establish that this family of probability measures satis es a Liouville type theorem and is indeed a statistical solution for the coupling equations. Further, they reveal that the invariant property of the statistical solution is a particular situation of the Liouville type theorem. Ministerio de Ciencia e Innovación (MCIU). España PGC2018-096540-B-I00 Agencia Estatal de Investigación (AEI). España PGC2018-096540-B-I00 Fondo Europeo de Desarrollo Regional (FEDER) PGC2018-096540-B-I00
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jde.2021.01.039&type=result"></script>');
-->
</script>
bronze |
citations | 37 | |
popularity | Top 1% | |
influence | Top 10% | |
impulse | Top 1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jde.2021.01.039&type=result"></script>');
-->
</script>
doi: 10.3934/math.2021239
This paper investigates a chemostat model with wall growth and Haldane consumption kinetics. In addition, bounded random fluctuations on the input flow, which are modeled by means of the well-known Ornstein-Uhlenbeck process, are considered to obtain a much more realistic model fitting in a better way the phenomena observed by practitioners in real devices. Once the existence and uniqueness of global positive solution has been proved, as well as the existence of deterministic absorbing and attracting sets, the random dynamics inside the attracting set is studied in detail to provide conditions under which persistence of species is ensured, the main goal pursued from the practical point of view. Finally, we support the theoretical results with several numerical simulations. Ministerio de Ciencia, Innovación y Universidades (MCIU). España PGC2018-096540-B-I00 Junta de Andalucía (Consejería de Economía y Conocimiento) FEDER US-1254251 Junta de Andalucía (Consejería de Economía y Conocimiento) P18-FR-4509 Dedicated to the memory of María José Garrido Atienza. Junta de Andalucía P12-FQM-1492
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/math.2021239&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 6 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/math.2021239&type=result"></script>');
-->
</script>
Brain dynamics depicts an extremely complex energy landscape that changes over time, and its characterisation is a central unsolved problem in neuroscience. We approximate the non-stationary landscape sustained by the human brain through a novel mathematical formalism that allows us characterise the attractor structure, i.e. the stationary points and their connections. Due to its time-varying nature, the structure of the global attractor and the corresponding number of energy levels changes over time. We apply this formalism to distinguish quantitatively between the different human brain states of wakefulness and different stages of sleep, as a step towards future clinical applications.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroimage.2021.118551&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 11 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroimage.2021.118551&type=result"></script>');
-->
</script>
doi: 10.1371/journal.pcbi.1010412 , 10.21203/rs.3.rs-1093655/v3 , 10.21203/rs.3.rs-1093655/v2 , 10.21203/rs.3.rs-1093655/v1
pmid: 36067227
pmc: PMC9481177
handle: 10668/20412 , 10230/56060
doi: 10.1371/journal.pcbi.1010412 , 10.21203/rs.3.rs-1093655/v3 , 10.21203/rs.3.rs-1093655/v2 , 10.21203/rs.3.rs-1093655/v1
pmid: 36067227
pmc: PMC9481177
handle: 10668/20412 , 10230/56060
The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pcbi.1010412&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 3 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pcbi.1010412&type=result"></script>');
-->
</script>
In this article, the authors investigate the system of Schr odinger and Klein-Gordon equations with Yukawa coupling. They rst prove the existence of pullback attractor and construct a family of invariant Borel probability measures. Then they establish that this family of probability measures satis es a Liouville type theorem and is indeed a statistical solution for the coupling equations. Further, they reveal that the invariant property of the statistical solution is a particular situation of the Liouville type theorem. Ministerio de Ciencia e Innovación (MCIU). España PGC2018-096540-B-I00 Agencia Estatal de Investigación (AEI). España PGC2018-096540-B-I00 Fondo Europeo de Desarrollo Regional (FEDER) PGC2018-096540-B-I00
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jde.2021.01.039&type=result"></script>');
-->
</script>
bronze |
citations | 37 | |
popularity | Top 1% | |
influence | Top 10% | |
impulse | Top 1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jde.2021.01.039&type=result"></script>');
-->
</script>
doi: 10.3934/math.2021239
This paper investigates a chemostat model with wall growth and Haldane consumption kinetics. In addition, bounded random fluctuations on the input flow, which are modeled by means of the well-known Ornstein-Uhlenbeck process, are considered to obtain a much more realistic model fitting in a better way the phenomena observed by practitioners in real devices. Once the existence and uniqueness of global positive solution has been proved, as well as the existence of deterministic absorbing and attracting sets, the random dynamics inside the attracting set is studied in detail to provide conditions under which persistence of species is ensured, the main goal pursued from the practical point of view. Finally, we support the theoretical results with several numerical simulations. Ministerio de Ciencia, Innovación y Universidades (MCIU). España PGC2018-096540-B-I00 Junta de Andalucía (Consejería de Economía y Conocimiento) FEDER US-1254251 Junta de Andalucía (Consejería de Economía y Conocimiento) P18-FR-4509 Dedicated to the memory of María José Garrido Atienza. Junta de Andalucía P12-FQM-1492
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/math.2021239&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 6 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/math.2021239&type=result"></script>');
-->
</script>
Brain dynamics depicts an extremely complex energy landscape that changes over time, and its characterisation is a central unsolved problem in neuroscience. We approximate the non-stationary landscape sustained by the human brain through a novel mathematical formalism that allows us characterise the attractor structure, i.e. the stationary points and their connections. Due to its time-varying nature, the structure of the global attractor and the corresponding number of energy levels changes over time. We apply this formalism to distinguish quantitatively between the different human brain states of wakefulness and different stages of sleep, as a step towards future clinical applications.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroimage.2021.118551&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 11 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroimage.2021.118551&type=result"></script>');
-->
</script>
doi: 10.1371/journal.pcbi.1010412 , 10.21203/rs.3.rs-1093655/v3 , 10.21203/rs.3.rs-1093655/v2 , 10.21203/rs.3.rs-1093655/v1
pmid: 36067227
pmc: PMC9481177
handle: 10668/20412 , 10230/56060
doi: 10.1371/journal.pcbi.1010412 , 10.21203/rs.3.rs-1093655/v3 , 10.21203/rs.3.rs-1093655/v2 , 10.21203/rs.3.rs-1093655/v1
pmid: 36067227
pmc: PMC9481177
handle: 10668/20412 , 10230/56060
The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pcbi.1010412&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 3 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pcbi.1010412&type=result"></script>');
-->
</script>