search
2,936,918 Research products

  • Open Access
  • GB

10
arrow_drop_down
Relevance
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ricardo Puebla; Alberto Imparato; Alessio Belenchia; Mauro Paternostro;

    A.I. gratefully acknowledges the financial support of The Faculty of Science and Technology at Aarhus University through a Sabbatical scholarship and the hospitality of the Quantum Technology group, the Centre for Theoretical Atomic, Molecular and Optical Physics and the School of Mathematics and Physics, during his stay at Queen’s University Belfast. A.B. acknowledges the hospitality of the Institute for Theoretical Physics and the “Nonequilibrium quantum dynamics” group at Universität Stuttgart, where part of this work was carried out. R.P. and M.P. acknowledge the support by the SFI-DfE Investigator Programme (Grant No. 15/IA/2864) the Eropean Union’s Horizon 2020 FET-Open project SuperQuLAN (899354) and TEQ (766900). M.P. acknowledges support by the Leverhulme Trust Research Project Grant UltraQuTe (Grant No. RGP-2018-266), the Royal Society Wolfson Fellowship (RSWF/R3/183013), the UK EPSRC (Grant No. EP/T028424/1) and the Department for the Economy Northern Ireland under the US-Ireland R&D Partnership Programme. A.B. also acknowledges support from H2020 through the MSCA IF pERFEcTO (Grant Agreement No. nr. 795782) and from the DeutscheForschungsgemeinschaft (DFG, German Research Foundation) Project No. BR5221/4-1. We consider a finite one-dimensional chain of quantum rotors interacting with a set of thermal baths at different temperatures. When the interaction between the rotors is made chiral, such a system behaves as an autonomous thermal motor, converting heat currents into non-vanishing rotational ones. Such a dynamical response is strongly pronounced in the range of the Hamiltonian parameters for which the ground state of the system in the thermodynamic limit exhibits a quantum phase transition. Such working points are associated with large quantum coherence and multipartite quantum correlations within the state of the system. This suggests that the optimal operating regime of such quantum autonomous motor is one of maximal quantumness. 9 pages, 9 figures Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Rese...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DIGITAL.CSIC
    Article . 2022
    Data sources: DIGITAL.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Janet I. Sprent; Julie Ardley; Euan K. James;

    Contents 40 I. 40 II. 41 III. 44 IV. 48 V. 49 VI. 49 VII. 52 VIII. 53 53 References 53 SUMMARY: In the last decade, analyses of both molecular and morphological characters, including nodulation, have led to major changes in our understanding of legume taxonomy. In parallel there has been an explosion in the number of genera and species of rhizobia known to nodulate legumes. No attempt has been made to link these two sets of data or to consider them in a biogeographical context. This review aims to do this by relating the data to the evolution of the two partners: it highlights both longitudinal and latitudinal trends and considers these in relation to the location of major land masses over geological time. Australia is identified as being a special case and latitudes north of the equator as being pivotal in the evolution of highly specialized systems in which the differentiated rhizobia effectively become ammonia factories. However, there are still many gaps to be filled before legume nodulation is sufficiently understood to be managed for the benefit of a world in which climate change is rife.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Phytologistarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    New Phytologist
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    New Phytologist
    Article . 2016
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    192
    citations192
    popularitySubstantial
    influenceAverage
    impulseSubstantial
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    J Ziegler; Robert U. Newton; Dimitra Bourboulia; D Casabonne; +10 Authors

    As part of a larger investigation of cancer in Uganda, we conducted a case-control study of Kaposi's sarcoma in human immunodeficiency virus-1 (HIV)-seronegative adults presenting at hospitals in Kampala. Cases comprised 117 HIV-seronegative patients with Kaposi's sarcoma and controls comprised 1,282 HIV-seronegative patients with a provisional diagnosis of cancer other than Kaposi's sarcoma. Study participants were interviewed about social and lifestyle factors, tested for HIV and, if there was sufficient sera, for antibodies against Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8 [HHV8]), using an immunofluorescent assay. Independent effects of these factors were identified using unconditional logistic regression, after adjusting for age group (<30, 30-44, 45+) and sex. Antibody status for KSHV was available for 68% (80) of cases and for 45% (607) of controls. Among cases, 78% (91) were male and 57% (66) were over the age of 35. Cases were more likely than controls to be from tribal groups other than the Baganda (p = 0.05), to have higher household incomes (p = 0.003), to have left their home region at younger ages (p < 0.001), to own goats or pigs (p = 0.02) and to rarely or never use shoes (p < 0.001). Similar results were obtained when analyses were restricted to cases and controls with anti-KSHV antibodies. The seroprevalence of KSHV was 79% (63/80) in those with Kaposi's sarcoma as compared to 50% (302/607) in those without (chi(2) heterogeneity (1 df) = 21.0; p < 0.001) and the risk of the tumour increased with increasing anti-KSHV antibody titres (chi(2) trend (1 df) = 29.7; p < 0.001). The risk of Kaposi's sarcoma is clearly linked to antibody status for KSHV, but it would seem that in Uganda other factors are also important in the development of the tumour.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    57
    citations57
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    downloaddownloads0
    Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    We introduce and develop a theory of orthogonality with respect to Sobolev inner products on the real line for sequences of functions with a tridiagonal, skew‐Hermitian differentiation matrix. While a theory of such L2 ‐orthogonal systems is well established, Sobolev orthogonality requires new concepts and their analysis. We characterize such systems completely as appropriately weighted Fourier transforms of orthogonal polynomials and present a number of illustrative examples, inclusive of a Sobolev‐orthogonal system whose leading N coefficients can be computed in O ( N log N ) $ \mathcal{O} (N\log N)$ operations. Funder: Narodowe Centrum Nauki; Id: http://dx.doi.org/10.13039/501100004281 Funder: Simons Foundation; Id: http://dx.doi.org/10.13039/100000893

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Ma...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Apollo
    Article . 2022
    Data sources: Apollo
    Apollo
    Article . 2022
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    downloaddownloads5
    Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alex Broadhead;

    In 2009, Damian Walford Davies called for a counterfactual turn in Romantic studies, a move reflective of a wider growth of critical interest in the relationship between Romanticism and counterfactual historiography. In contrast to these more recent developments, the lives of the Romantics have provided a consistent source of speculation for authors of popular alternate history since the nineteenth century. Yet the aims of alternate history as a genre differ markedly from those of its more scholarly cousin, counterfactual historiography. How, then, might such works fit in to the proposed counterfactual turn? This article makes a case for the critical as well as the creative value of alternate histories featuring the Romantics. By exploring how these narratives differ from works of counterfactual historiography, it seeks to explain why the Romantics continue to inspire authors of alternate history and to illuminate the forking paths that Davies's counterfactual turn might take.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Romanticismarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    downloaddownloads38
    Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Yun Li; Zhicheng Xu; Ming Xie; Bangxi Zhang; +2 Authors

    We compared the performance of conventional and aquaporin thin-film composite forward osmosis (FO) membranes (denoted as HTI and AQP membrane, respectively) for concentration of digested manure centrate. Results show that the two FO membranes were capable to concentrate digested centrate for resource recovery. During concentration of digested manure centrate, a cohesive fouling layer formed on the HTI membrane surface, resulting in more dramatic flux decline and less fouling reversibility in comparison to the AQP membrane. The two FO membranes exhibited effective and comparable rejection of bulk organic matter, total phosphorus, and heavy metals, leading to their notable enrichment in digested manure centrate. By contrast, ammonium nitrogen (NH4 +-N) was only retained by approximately 40% using the two FO membranes with a slightly higher retention by the HTI membrane, since it was less negatively charged. As a result, total nitrogen was ineffectively rejected by the two FO membranes. It is noteworthy that the HTI membrane also contributed to higher rejection of most antibiotics than the AQP membrane, possibly due to enhanced retention by the fouling layer and retarded forward diffusion. Results from this study evidence the outperformance of the AQP membrane as a new generation FO membrane over its conventional counterpart with respect to antifouling property, while further improvement in membrane selectivity, particularly of monovalent cations (e.g. NH4 +-N), is needed to advance FO applications in resource recovery from challenging waste streams.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    34
    citations34
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Jo Van Herwegen; Victoria Simms;

    Abstract Background The current systematic review is the first to systematically explore and synthesis research to date on mathematical abilities in Williams syndrome (WS), a rare genetic disorder that results in an uneven cognitive profile. As mathematical development is complex and relies on both domain-specific and domain-general abilities, it is currently not clear what mathematical abilities have been examined in WS and also what the current gaps in this research area are. Methods and procedures A total of 27 studies across 22 publications were identified through a systematic review search process. Results Overall, all mathematical abilities, except for simple counting and subitizing abilities, were reported to be impaired but in line with overall mental-age abilities. However, the literature to date has not established the underlying causes of these mathematical difficulties in WS. Some studies suggested that mathematical abilities in WS follow an atypical developmental pathway with a greater reliance on verbal abilities than in typical development but coupled with impaired understanding of counting and knowledge of the number system more broadly. However, most included studies used different assessments of mathematical skills and there is a lack of studies that have examined more than one particular aspect of mathematical development within the same study. In addition, studies have often included large age ranges and small participant samples, despite the known large individual variability in WS. Conclusion Although we know mathematical abilities in WS are impaired, this area is under-researched and there is a lack of longitudinal studies that provide insight into the cognitive mechanisms that underpin mathematical development in WS. Therefore, there is a lack of an evidence-base to inform interventions or educational practice.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research in Developm...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Stine M. Præstholm; Majken S. Siersbæk; Ronni Nielsen; Xuguang Zhu; +3 Authors

    Hormone-dependent activation of enhancers includes histone hyperacetylation and mediator recruitment. Histone hyperacetylation is mostly explained by a bimodal switch model, where histone deacetylases (HDACs) disassociate from chromatin, and histone acetyl transferases (HATs) are recruited. This model builds on decades of research on steroid receptor regulation of transcription. Yet, the general concept of the bimodal switch model has not been rigorously tested genome wide. We have used a genomics approach to study enhancer hyperacetylation by the thyroid hormone receptor (TR), described to operate as a bimodal switch. H3 acetylation, HAT and HDAC ChIP-seq analyses of livers from hypo- and hyperthyroid wildtype, TR deficient and NCOR1 disrupted mice reveal three types of thyroid hormone (T3)-regulated enhancers. One subset of enhancers is bound by HDAC3-NCOR1 in the absence of hormone and constitutively occupy TR and HATs irrespective of T3 levels, suggesting a poised enhancer state in absence of hormone. In presence of T3, HDAC3-NCOR1 dissociates from these enhancers leading to histone hyperacetylation, suggesting a histone acetylation rheostat function of HDACs at poised enhancers. Another subset of enhancers, not occupied by HDACs, is hyperacetylated in a T3-dependent manner, where TR is recruited to chromatin together with HATs. Lastly, a subset of enhancers, is not occupied directly by TR yet requires TR for histone hyperacetylation. This indirect enhancer activation involves co-association with TR bound enhancers within super-enhancers or topological associated domains. Collectively, this demonstrates various mechanisms controlling hormone-dependent transcription and adds significant details to the otherwise simple bimodal switch model. Author summary Thyroid hormone (T3) is a central regulator of growth, thermogenesis, heart rate and metabolism. In the liver T3 binds thyroid hormone receptor beta (TRβ) controlling expression of genes involved in processes such as lipid and cholesterol metabolism. The molecular mechanisms controlling TR-dependent gene regulation are centred on a bimodal switch model. In the absence of T3 co-repressors bind TR reducing gene expression. When hormone binds TR, co-repressors dissociate, and co-activators are recruited inducing gene expression. This model predominates the current understanding of T3-regulated gene expression. However, only a few studies have tested this model by genome-wide approaches. We have quantified histone3 acetylation genome-wide in the liver of hypo- and hyperthyroid mice and identified gene regulatory regions regulated by T3. Probing TR and co-regulators at these regulatory regions, and analysing histone3 acetylation in mouse models for disrupted co-repressor and TR activity, reveal additional insights to the mechanisms regulating T3-dependent gene expression. We suggest a revision of the prevailing bimodal switch model which helps understanding T3-regulated gene expression in tissues such as liver. We hope that this study, together with future studies, will add new perspectives on nuclear receptor-mediated transcriptional regulation to reveal general principles.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Southe...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Article . 2020
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PLoS Genetics
    Article
    License: cc0
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PLoS Genetics
    Article . 2020
    Data sources: DOAJ-Articles
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sarah Lewis; Tracey Pratchett;

    This study evaluated a national collaborative project to develop generic, freely available e-learning modules on literature search skills for the healthcare workforce in NHS England. Feedback data was drawn from usage reports, an online survey embedded within each module and a separate online survey nationally distributed to health-related library staff. The modules evaluated positively; learners found them useful, they impacted on learning and confirmed or increased knowledge. Only 3% reported that the modules made no difference to their literature search skills. There was also evidence that some libraries were using the modules as part of their local training. The study suggests that although there are challenges in trying to develop a one size fits all approach to e-learning, collaborating with potential end users and trainers can help to maximise its usefulness.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.lirgjour...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://www.lirgjournal.org.uk...
    Article
    License: cc-by-nc
    Data sources: UnpayWall
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ajanthan, Thalaiyasingam; Gupta, Kartik; Torr, Philip H. S.; Hartley, Richard; +1 Authors

    Quantizing large Neural Networks (NN) while maintaining the performance is highly desirable for resource-limited devices due to reduced memory and time complexity. It is usually formulated as a constrained optimization problem and optimized via a modified version of gradient descent. In this work, by interpreting the continuous parameters (unconstrained) as the dual of the quantized ones, we introduce a Mirror Descent (MD) framework for NN quantization. Specifically, we provide conditions on the projections (i.e., mapping from continuous to quantized ones) which would enable us to derive valid mirror maps and in turn the respective MD updates. Furthermore, we present a numerically stable implementation of MD that requires storing an additional set of auxiliary variables (unconstrained), and show that it is strikingly analogous to the Straight Through Estimator (STE) based method which is typically viewed as a "trick" to avoid vanishing gradients issue. Our experiments on CIFAR-10/100, TinyImageNet, and ImageNet classification datasets with VGG-16, ResNet-18, and MobileNetV2 architectures show that our MD variants obtain quantized networks with state-of-the-art performance. Code is available at https://github.com/kartikgupta-at-anu/md-bnn. Comment: This paper was accepted at AISTATS 2021

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility0
    visibilityviews0
    downloaddownloads1
    Powered by BIP!
2,936,918 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ricardo Puebla; Alberto Imparato; Alessio Belenchia; Mauro Paternostro;

    A.I. gratefully acknowledges the financial support of The Faculty of Science and Technology at Aarhus University through a Sabbatical scholarship and the hospitality of the Quantum Technology group, the Centre for Theoretical Atomic, Molecular and Optical Physics and the School of Mathematics and Physics, during his stay at Queen’s University Belfast. A.B. acknowledges the hospitality of the Institute for Theoretical Physics and the “Nonequilibrium quantum dynamics” group at Universität Stuttgart, where part of this work was carried out. R.P. and M.P. acknowledge the support by the SFI-DfE Investigator Programme (Grant No. 15/IA/2864) the Eropean Union’s Horizon 2020 FET-Open project SuperQuLAN (899354) and TEQ (766900). M.P. acknowledges support by the Leverhulme Trust Research Project Grant UltraQuTe (Grant No. RGP-2018-266), the Royal Society Wolfson Fellowship (RSWF/R3/183013), the UK EPSRC (Grant No. EP/T028424/1) and the Department for the Economy Northern Ireland under the US-Ireland R&D Partnership Programme. A.B. also acknowledges support from H2020 through the MSCA IF pERFEcTO (Grant Agreement No. nr. 795782) and from the DeutscheForschungsgemeinschaft (DFG, German Research Foundation) Project No. BR5221/4-1. We consider a finite one-dimensional chain of quantum rotors interacting with a set of thermal baths at different temperatures. When the interaction between the rotors is made chiral, such a system behaves as an autonomous thermal motor, converting heat currents into non-vanishing rotational ones. Such a dynamical response is strongly pronounced in the range of the Hamiltonian parameters for which the ground state of the system in the thermodynamic limit exhibits a quantum phase transition. Such working points are associated with large quantum coherence and multipartite quantum correlations within the state of the system. This suggests that the optimal operating regime of such quantum autonomous motor is one of maximal quantumness. 9 pages, 9 figures Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Rese...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DIGITAL.CSIC
    Article . 2022
    Data sources: DIGITAL.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Janet I. Sprent; Julie Ardley; Euan K. James;

    Contents 40 I. 40 II. 41 III. 44 IV. 48 V. 49 VI. 49 VII. 52 VIII. 53 53 References 53 SUMMARY: In the last decade, analyses of both molecular and morphological characters, including nodulation, have led to major changes in our understanding of legume taxonomy. In parallel there has been an explosion in the number of genera and species of rhizobia known to nodulate legumes. No attempt has been made to link these two sets of data or to consider them in a biogeographical context. This review aims to do this by relating the data to the evolution of the two partners: it highlights both longitudinal and latitudinal trends and considers these in relation to the location of major land masses over geological time. Australia is identified as being a special case and latitudes north of the equator as being pivotal in the evolution of highly specialized systems in which the differentiated rhizobia effectively become ammonia factories. However, there are still many gaps to be filled before legume nodulation is sufficiently understood to be managed for the benefit of a world in which climate change is rife.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Phytologistarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    New Phytologist
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    New Phytologist
    Article . 2016
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    192
    citations192
    popularitySubstantial
    influenceAverage
    impulseSubstantial
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    J Ziegler; Robert U. Newton; Dimitra Bourboulia; D Casabonne; +10 Authors

    As part of a larger investigation of cancer in Uganda, we conducted a case-control study of Kaposi's sarcoma in human immunodeficiency virus-1 (HIV)-seronegative adults presenting at hospitals in Kampala. Cases comprised 117 HIV-seronegative patients with Kaposi's sarcoma and controls comprised 1,282 HIV-seronegative patients with a provisional diagnosis of cancer other than Kaposi's sarcoma. Study participants were interviewed about social and lifestyle factors, tested for HIV and, if there was sufficient sera, for antibodies against Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8 [HHV8]), using an immunofluorescent assay. Independent effects of these factors were identified using unconditional logistic regression, after adjusting for age group (<30, 30-44, 45+) and sex. Antibody status for KSHV was available for 68% (80) of cases and for 45% (607) of controls. Among cases, 78% (91) were male and 57% (66) were over the age of 35. Cases were more likely than controls to be from tribal groups other than the Baganda (p = 0.05), to have higher household incomes (p = 0.003), to have left their home region at younger ages (p < 0.001), to own goats or pigs (p = 0.02) and to rarely or never use shoes (p < 0.001). Similar results were obtained when analyses were restricted to cases and controls with anti-KSHV antibodies. The seroprevalence of KSHV was 79% (63/80) in those with Kaposi's sarcoma as compared to 50% (302/607) in those without (chi(2) heterogeneity (1 df) = 21.0; p < 0.001) and the risk of the tumour increased with increasing anti-KSHV antibody titres (chi(2) trend (1 df) = 29.7; p < 0.001). The risk of Kaposi's sarcoma is clearly linked to antibody status for KSHV, but it would seem that in Uganda other factors are also important in the development of the tumour.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    57
    citations57
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    downloaddownloads0
    Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    We introduce and develop a theory of orthogonality with respect to Sobolev inner products on the real line for sequences of functions with a tridiagonal, skew‐Hermitian differentiation matrix. While a theory of such L2 ‐orthogonal systems is well established, Sobolev orthogonality requires new concepts and their analysis. We characterize such systems completely as appropriately weighted Fourier transforms of orthogonal polynomials and present a number of illustrative examples, inclusive of a Sobolev‐orthogonal system whose leading N coefficients can be computed in O ( N log N ) $ \mathcal{O} (N\log N)$ operations. Funder: Narodowe Centrum Nauki; Id: http://dx.doi.org/10.13039/501100004281 Funder: Simons Foundation; Id: http://dx.doi.org/10.13039/100000893

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Ma...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Apollo
    Article . 2022
    Data sources: Apollo
    Apollo
    Article . 2022
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    downloaddownloads5
    Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alex Broadhead;

    In 2009, Damian Walford Davies called for a counterfactual turn in Romantic studies, a move reflective of a wider growth of critical interest in the relationship between Romanticism and counterfactual historiography. In contrast to these more recent developments, the lives of the Romantics have provided a consistent source of speculation for authors of popular alternate history since the nineteenth century. Yet the aims of alternate history as a genre differ markedly from those of its more scholarly cousin, counterfactual historiography. How, then, might such works fit in to the proposed counterfactual turn? This article makes a case for the critical as well as the creative value of alternate histories featuring the Romantics. By exploring how these narratives differ from works of counterfactual historiography, it seeks to explain why the Romantics continue to inspire authors of alternate history and to illuminate the forking paths that Davies's counterfactual turn might take.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Romanticismarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    downloaddownloads38
    Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Yun Li; Zhicheng Xu; Ming Xie; Bangxi Zhang; +2 Authors

    We compared the performance of conventional and aquaporin thin-film composite forward osmosis (FO) membranes (denoted as HTI and AQP membrane, respectively) for concentration of digested manure centrate. Results show that the two FO membranes were capable to concentrate digested centrate for resource recovery. During concentration of digested manure centrate, a cohesive fouling layer formed on the HTI membrane surface, resulting in more dramatic flux decline and less fouling reversibility in comparison to the AQP membrane. The two FO membranes exhibited effective and comparable rejection of bulk organic matter, total phosphorus, and heavy metals, leading to their notable enrichment in digested manure centrate. By contrast, ammonium nitrogen (NH4 +-N) was only retained by approximately 40% using the two FO membranes with a slightly higher retention by the HTI membrane, since it was less negatively charged. As a result, total nitrogen was ineffectively rejected by the two FO membranes. It is noteworthy that the HTI membrane also contributed to higher rejection of most antibiotics than the AQP membrane, possibly due to enhanced retention by the fouling layer and retarded forward diffusion. Results from this study evidence the outperformance of the AQP membrane as a new generation FO membrane over its conventional counterpart with respect to antifouling property, while further improvement in membrane selectivity, particularly of monovalent cations (e.g. NH4 +-N), is needed to advance FO applications in resource recovery from challenging waste streams.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    34
    citations34
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Jo Van Herwegen; Victoria Simms;

    Abstract Background The current systematic review is the first to systematically explore and synthesis research to date on mathematical abilities in Williams syndrome (WS), a rare genetic disorder that results in an uneven cognitive profile. As mathematical development is complex and relies on both domain-specific and domain-general abilities, it is currently not clear what mathematical abilities have been examined in WS and also what the current gaps in this research area are. Methods and procedures A total of 27 studies across 22 publications were identified through a systematic review search process. Results Overall, all mathematical abilities, except for simple counting and subitizing abilities, were reported to be impaired but in line with overall mental-age abilities. However, the literature to date has not established the underlying causes of these mathematical difficulties in WS. Some studies suggested that mathematical abilities in WS follow an atypical developmental pathway with a greater reliance on verbal abilities than in typical development but coupled with impaired understanding of counting and knowledge of the number system more broadly. However, most included studies used different assessments of mathematical skills and there is a lack of studies that have examined more than one particular aspect of mathematical development within the same study. In addition, studies have often included large age ranges and small participant samples, despite the known large individual variability in WS. Conclusion Although we know mathematical abilities in WS are impaired, this area is under-researched and there is a lack of longitudinal studies that provide insight into the cognitive mechanisms that underpin mathematical development in WS. Therefore, there is a lack of an evidence-base to inform interventions or educational practice.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research in Developm...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Stine M. Præstholm; Majken S. Siersbæk; Ronni Nielsen; Xuguang Zhu; +3 Authors

    Hormone-dependent activation of enhancers includes histone hyperacetylation and mediator recruitment. Histone hyperacetylation is mostly explained by a bimodal switch model, where histone deacetylases (HDACs) disassociate from chromatin, and histone acetyl transferases (HATs) are recruited. This model builds on decades of research on steroid receptor regulation of transcription. Yet, the general concept of the bimodal switch model has not been rigorously tested genome wide. We have used a genomics approach to study enhancer hyperacetylation by the thyroid hormone receptor (TR), described to operate as a bimodal switch. H3 acetylation, HAT and HDAC ChIP-seq analyses of livers from hypo- and hyperthyroid wildtype, TR deficient and NCOR1 disrupted mice reveal three types of thyroid hormone (T3)-regulated enhancers. One subset of enhancers is bound by HDAC3-NCOR1 in the absence of hormone and constitutively occupy TR and HATs irrespective of T3 levels, suggesting a poised enhancer state in absence of hormone. In presence of T3, HDAC3-NCOR1 dissociates from these enhancers leading to histone hyperacetylation, suggesting a histone acetylation rheostat function of HDACs at poised enhancers. Another subset of enhancers, not occupied by HDACs, is hyperacetylated in a T3-dependent manner, where TR is recruited to chromatin together with HATs. Lastly, a subset of enhancers, is not occupied directly by TR yet requires TR for histone hyperacetylation. This indirect enhancer activation involves co-association with TR bound enhancers within super-enhancers or topological associated domains. Collectively, this demonstrates various mechanisms controlling hormone-dependent transcription and adds significant details to the otherwise simple bimodal switch model. Author summary Thyroid hormone (T3) is a central regulator of growth, thermogenesis, heart rate and metabolism. In the liver T3 binds thyroid hormone receptor beta (TRβ) controlling expression of genes involved in processes such as lipid and cholesterol metabolism. The molecular mechanisms controlling TR-dependent gene regulation are centred on a bimodal switch model. In the absence of T3 co-repressors bind TR reducing gene expression. When hormone binds TR, co-repressors dissociate, and co-activators are recruited inducing gene expression. This model predominates the current understanding of T3-regulated gene expression. However, only a few studies have tested this model by genome-wide approaches. We have quantified histone3 acetylation genome-wide in the liver of hypo- and hyperthyroid mice and identified gene regulatory regions regulated by T3. Probing TR and co-regulators at these regulatory regions, and analysing histone3 acetylation in mouse models for disrupted co-repressor and TR activity, reveal additional insights to the mechanisms regulating T3-dependent gene expression. We suggest a revision of the prevailing bimodal switch model which helps understanding T3-regulated gene expression in tissues such as liver. We hope that this study, together with future studies, will add new perspectives on nuclear receptor-mediated transcriptional regulation to reveal general principles.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Southe...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Article . 2020
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PLoS Genetics
    Article
    License: cc0
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PLoS Genetics
    Article . 2020
    Data sources: DOAJ-Articles
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sarah Lewis; Tracey Pratchett;

    This study evaluated a national collaborative project to develop generic, freely available e-learning modules on literature search skills for the healthcare workforce in NHS England. Feedback data was drawn from usage reports, an online survey embedded within each module and a separate online survey nationally distributed to health-related library staff. The modules evaluated positively; learners found them useful, they impacted on learning and confirmed or increased knowledge. Only 3% reported that the modules made no difference to their literature search skills. There was also evidence that some libraries were using the modules as part of their local training. The study suggests that although there are challenges in trying to develop a one size fits all approach to e-learning, collaborating with potential end users and trainers can help to maximise its usefulness.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.lirgjour...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://www.lirgjournal.org.uk...
    Article
    License: cc-by-nc
    Data sources: UnpayWall
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ajanthan, Thalaiyasingam; Gupta, Kartik; Torr, Philip H. S.; Hartley, Richard; +1 Authors

    Quantizing large Neural Networks (NN) while maintaining the performance is highly desirable for resource-limited devices due to reduced memory and time complexity. It is usually formulated as a constrained optimization problem and optimized via a modified version of gradient descent. In this work, by interpreting the continuous parameters (unconstrained) as the dual of the quantized ones, we introduce a Mirror Descent (MD) framework for NN quantization. Specifically, we provide conditions on the projections (i.e., mapping from continuous to quantized ones) which would enable us to derive valid mirror maps and in turn the respective MD updates. Furthermore, we present a numerically stable implementation of MD that requires storing an additional set of auxiliary variables (unconstrained), and show that it is strikingly analogous to the Straight Through Estimator (STE) based method which is typically viewed as a "trick" to avoid vanishing gradients issue. Our experiments on CIFAR-10/100, TinyImageNet, and ImageNet classification datasets with VGG-16, ResNet-18, and MobileNetV2 architectures show that our MD variants obtain quantized networks with state-of-the-art performance. Code is available at https://github.com/kartikgupta-at-anu/md-bnn. Comment: This paper was accepted at AISTATS 2021

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility0
    visibilityviews0
    downloaddownloads1
    Powered by BIP!
Send a message
How can we help?
We usually respond in a few hours.