This is the dataset pertaining to the article "Macrophage Innate Training Induced by IL-4 and IL-13 Activation Enhances OXPHOS Driven Anti-Mycobacterial Responses". To interpret and follow the data, please refer to the linked article, as each excel sheet corresponds with each named graph/figure. Abstract: Macrophages are a highly adaptive population of innate immune cells. Polarization with IFNγ and LPS into the “classically activated” M1 macrophage enhances pro-inflammatory and microbicidal responses, important for eradicating bacteria such as Mycobacterium tuberculosis. By contrast, “alternatively activated” M2 macrophages, polarized with IL-4, oppose bactericidal mechanisms and allow mycobacterial growth. These activation states are accompanied by distinct metabolic profiles, where M1 macrophages favor near exclusive use of glycolysis, whereas M2 macrophages up-regulate oxidative phosphorylation (OXPHOS). Here we demonstrate that activation with IL-4 and IL-13 counterintuitively induces protective innate memory against mycobacterial challenge. In human and murine models, prior activation with IL-4/13 enhances pro-inflammatory cytokine secretion in response to a secondary stimulation with mycobacterial ligands. In our murine model, enhanced killing capacity is also demonstrated. Despite this switch in phenotype, IL-4/13 trained murine macrophages do not demonstrate M1-typical metabolism, instead retaining heightened use of OXPHOS. Moreover, inhibition of OXPHOS with oligomycin, 2-deoxy glucose or BPTES all impeded heightened pro-inflammatory cytokine responses from IL-4/13 trained macrophages. Lastly, this work identifies that IL-10 attenuates protective IL-4/13 training, impeding pro-inflammatory and bactericidal mechanisms. In summary, this work provides new and unexpected insight into alternative macrophage activation states in the context of mycobacterial infection.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/ncbph43m85.3&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/ncbph43m85.3&type=result"></script>');
-->
</script>
pmid: 33484910
The majority of in vitro studies assessing cancer treatments are performed in two-dimensional (2D) monolayers and are subsequently validated in in vivo animal models. However, 2D models fail to accurately model the tumour microenvironment. Furthermore, animal models are not directly applicable to mimic the human scenario. Three-dimensional (3D) culture models may help to address the discrepancies of 2D and animal models. When cancer cells escape the primary tumour, they can invade at distant organs building secondary tumours, called metastasis. The development of metastasis leads to a dramatic decrease in the life expectancy of patients. Therefore, 3D systems to model the microenvironment of metastasis have also been developed. Several studies have demonstrated changes in cell behaviour and gene expression when cells are cultured in 3D compared to 2D and concluded a better comparability to cells in vivo. Of special importance is the effect seen in response to anti-cancer treatments as models are built primarily to serve as drug-testing platforms. This review highlights these changes between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate tumours. In addition to models aiming to mimic the primary tumour site, the effects of 3D cell culturing in bone metastasis models are also described. STATEMENT OF SIGNIFICANCE: Most in vitro studies in cancer research are performed in 2D and are subsequently validated in in vivo animal models. However, both models possess numerous limitations: 2D models fail to accurately model the tumour microenvironment while animal models are expensive, time-consuming and can differ considerably from humans. It is accepted that the cancer microenvironment plays a critical role in the disease, thus, 3D models have been proposed as a potential solution to address the discrepancies of 2D and animal models. This review highlights changes in cell behaviour, including proliferation, gene expression and chemosensitivity, between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate cancer as well as bone metastasis.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.actbio.2021.01.023&type=result"></script>');
-->
</script>
bronze |
citations | 31 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.actbio.2021.01.023&type=result"></script>');
-->
</script>
In this paper, we report on the structural and electronic properties of polycrystalline gallium antimonide (poly-GaSb) films (50–250 nm) deposited on p+ Si/SiO2 by metalorganic vapour phase epitaxy at 475 °C. GaSb films grown on semi-insulating GaAs substrates are included as comparative samples. In all cases, the unintentionally doped GaSb is p-type, with a hole concentration in the range of 2 × 1016 to 2 × 1017 cm−3. Exceptional hole mobilities are measured for polycrystalline GaSb on SiO2 in the range of 9–66 cm2/Vs, exceeding the reported values for many other semiconductors grown at low temperatures. A mobility of 9.1 cm2/Vs is recorded for an amorphous GaSb layer in a poly-GaAs/amorphous GaSb heterostructure. Mechanisms limiting the mobility in the GaSb thin films are investigated. It is found that for the GaSb grown directly on GaAs, the mobility is phonon-limited, while the GaSb deposited directly on SiO2 has a Coulomb scattering limited mobility, and the poly-GaAs/amorphous GaSb heterostructure on SiO2 displays a mobility which is consistent with variable-range-hopping. GaSb films grown at low temperatures demonstrate a far greater potential for implementation in p-channel devices than for implementation in ICs.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cryst11111348&type=result"></script>');
-->
</script>
gold |
citations | 3 | |
popularity | Top 10% | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cryst11111348&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.biomac.4c01500&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.biomac.4c01500&type=result"></script>');
-->
</script>
[Image: see text] In pursuit of commercial viability for carbon dioxide (CO(2)) electrolysis, this study investigates the operational challenges associated with membrane electrode assembly (MEA)-type CO(2) electrolyzers, with a focus on CO(2) loss into the solution phase through bicarbonate (HCO(3)(–)) and carbonate (CO(3)(2–)) ion formation. Utilizing a silver electrode known for selectively facilitating CO(2) to CO conversion, the molar production of CO(2), CO, and H(2) is measured across a range of current densities from 0 to 600 mA/cm(2), while maintaining a constant CO(2) inlet flow rate of 58 mL/min. The dynamics of CO(2) loss are monitored through measurements of pH changes in the electrolyte and carbon elemental balance analysis. Employing the concept of conservation of elemental carbon, a chemical reaction analysis is conducted, identifying the critical role of the hydroxide (OH(–)) ion. At lower current densities below 125 mA/cm(2), where CO(2) reduction predominates, it is observed that CO(2) loss is proportional to current density, reaching up to 0.18 mmol/min, and directly correlates with the rate of OH(–) ion production, indicative of HCO(3)(–)/CO(3)(2–) ion formation. Conversely, at higher current densities above 450 mA/cm(2), where hydrogen evolution is the dominant process, CO(2) loss is shown to decouple from the OH(–) ion production rate with a constant limit condition of 0.12 mmol/min, regardless of the current density. This suggests that electrolyte-induced cathode flooding restricts CO(2) access to cathode sites. Additionally, pH change in the electrolyte during the electrolysis further infers differing ion populations in the CO(2) reduction and hydrogen evolution regimes, and their movement across the membrane. Continued monitoring of the pH change after the cessation of electricity offers insights into the accumulation of HCO(3)(–)/CO(3)(2–) ion at the cathode, influencing salt formation.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.4c01101&type=result"></script>');
-->
</script>
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.4c01101&type=result"></script>');
-->
</script>
pmid: 36173104
pmc: PMC9555863
Macrophages are a highly adaptive population of innate immune cells. Polarization with IFNγ and LPS into the ‘classically activated’ M1 macrophage enhances pro-inflammatory and microbicidal responses, important for eradicating bacteria such as Mycobacterium tuberculosis. By contrast, ‘alternatively activated’ M2 macrophages, polarized with IL-4, oppose bactericidal mechanisms and allow mycobacterial growth. These activation states are accompanied by distinct metabolic profiles, where M1 macrophages favor near exclusive use of glycolysis, whereas M2 macrophages up-regulate oxidative phosphorylation (OXPHOS). Here, we demonstrate that activation with IL-4 and IL-13 counterintuitively induces protective innate memory against mycobacterial challenge. In human and murine models, prior activation with IL-4/13 enhances pro-inflammatory cytokine secretion in response to a secondary stimulation with mycobacterial ligands. In our murine model, enhanced killing capacity is also demonstrated. Despite this switch in phenotype, IL-4/13 trained murine macrophages do not demonstrate M1-typical metabolism, instead retaining heightened use of OXPHOS. Moreover, inhibition of OXPHOS with oligomycin, 2-deoxy glucose or BPTES all impeded heightened pro-inflammatory cytokine responses from IL-4/13 trained macrophages. Lastly, this work identifies that IL-10 attenuates protective IL-4/13 training, impeding pro-inflammatory and bactericidal mechanisms. In summary, this work provides new and unexpected insight into alternative macrophage activation states in the context of mycobacterial infection.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.74690&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 7 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.74690&type=result"></script>');
-->
</script>
doi: 10.1063/9.0000436
Melt-spun Fe-based ribbons are widely used as the core of transformers and inductors due to their high flux density and low coercivity. However due to their high thickness (∼19 µm) these ribbons are prone to large eddy current losses at MHz frequencies. Despite low yield, ball milling has been widely used to break such ribbons down to thinner flakes to suppress the eddy current losses at high frequency. In this work, we demonstrated an optimized ball milling process with increased yield for flakes in the desired size range (2–4 µm). We have demonstrated that reducing pre milling annealing temperature from 450 to 350 °C increases the yield in desired size range from 2% to 5% and further increasing batch size from 10 to 20 g increases the yield to 21%. The coercivity of the milled flakes increases from 139 to 1352 A/m due to the ball milling process. A post-mill annealing at 350 °C in Ar atmosphere decreases the coercivity to 341 A/m. X-ray diffraction analysis showed no sign of crystallization during ball milling. The result presented here demonstrates an efficient approach to fabricate ultra-thin flakes out of soft magnetic ribbons for high-frequency applications.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/9.0000436&type=result"></script>');
-->
</script>
gold |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/9.0000436&type=result"></script>');
-->
</script>
The domain walls between AB- and BA-stacked gapped bilayer graphene have garnered intense interest as they host topologically-protected, valley-polarised transport channels. The introduction of a twist angle between the bilayers and the associated formation of a Moire pattern has been the dominant method used to study these topological channels, but heterostrain can also give rise to similar stacking domains and interfaces. Here, we theoretically study the electronic structure of a uniaxially heterostrained bilayer graphene. We discuss the formation and evolution of interface-localized channels in the one-dimensional Moire pattern that emerges due to the different stacking registries between the two layers. We find that a uniform heterostrain is not sufficient to create one-dimensional topological channels in biased bilayer graphene. Instead, using a simple model to account for the in-plane atomic reconstruction driven by the changing stacking registry, we show that the resulting expanded Bernal-stacked domains and sharper interfaces are required for robust topological interfaces to emerge. These states are highly localised in the AA- or SP-stacked interface regions and exhibit differences in their layer and sublattice distribution depending on the interface stacking. We conclude that heterostrain can be used as a mechanism to tune the presence and distribution of topological channels in gapped bilayer graphene systems, complementary to the field of twistronics. 10 pages, 7 figures
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevb.109.035403&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevb.109.035403&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.3c06057&type=result"></script>');
-->
</script>
hybrid |
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.3c06057&type=result"></script>');
-->
</script>
AbstractChronic total occlusions (CTOs) occur in approximately 40% of individuals with symptomatic peripheral arterial disease and are indicative of critical limb ischaemia. Currently, few medical devices can effectively treat CTOs long‐term, with amputation often required. This is due to a lack of knowledge of CTO anatomy, making device design and testing difficult. This study is a proof‐of‐concept study, which aimed to develop a workflow for further characterising the complex multi‐material anatomy of CTOs and creating 3D models of CTO components, which may be useful in producing a vascular CTO biomimetic for device testing. Here, we establish such a workflow using samples of atheromatous plaques. We focus on a high‐resolution, non‐destructive microcomputed tomography (μCT) technique which enables visualisation of occlusion anatomy at a greater resolution than computed tomography angiography (CTA), which is the typical modality used for CTO clinical visualisation. Four arteries (n = 2 superficial femoral; n = 2 popliteal) with evidence of atheromatous plaques were cut into 8 cm segments, which were then stained with iodine and scanned at low resolution, with calcified regions rescanned at high resolution. Resulting files were manually segmented to generate 3D models, which were then 3D printed in resin using a stereolithography printer to produce parts suitable for creating a biomimetic. In total, μCT files from three arterial segments (n = 2 high resolution, n = 1 low resolution) were deemed suitably calcified for segmentation, and thus were segmented to produce 3D models. 3D models of the arterial wall, intima and atheromatous calcium deposits from a high‐resolution popliteal artery scan were successfully 3D printed at several scales. While this research is at an early stage, it holds great promise. The workflow for segmentation and 3D printing various components of an atheromatous plaque established here is replicable and uses software and equipment which are accessible to research laboratories in both academia and industry. The ability to print detailed models on a desktop 3D printer is unprecedented and can be improved further, which is promising for future development of biomimetics with multi‐material detail of both soft tissue and calcified components of a vascular occlusion. Indeed, this workflow provides a solid foundation for future studies of CTO anatomy and the creation of true, multi‐material CTO biomimetics. Such biomimetics may enable the development of improved interventional devices, as they would mimic the general in vivo CTO environment. As this method cannot be applied in vivo, we cannot yet produce patient‐specific biomimetics, however, these analogues would still be important in device development, which would improve patient outcomes in critical limb ischaemia.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/joa.13648&type=result"></script>');
-->
</script>
hybrid |
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/joa.13648&type=result"></script>');
-->
</script>
This is the dataset pertaining to the article "Macrophage Innate Training Induced by IL-4 and IL-13 Activation Enhances OXPHOS Driven Anti-Mycobacterial Responses". To interpret and follow the data, please refer to the linked article, as each excel sheet corresponds with each named graph/figure. Abstract: Macrophages are a highly adaptive population of innate immune cells. Polarization with IFNγ and LPS into the “classically activated” M1 macrophage enhances pro-inflammatory and microbicidal responses, important for eradicating bacteria such as Mycobacterium tuberculosis. By contrast, “alternatively activated” M2 macrophages, polarized with IL-4, oppose bactericidal mechanisms and allow mycobacterial growth. These activation states are accompanied by distinct metabolic profiles, where M1 macrophages favor near exclusive use of glycolysis, whereas M2 macrophages up-regulate oxidative phosphorylation (OXPHOS). Here we demonstrate that activation with IL-4 and IL-13 counterintuitively induces protective innate memory against mycobacterial challenge. In human and murine models, prior activation with IL-4/13 enhances pro-inflammatory cytokine secretion in response to a secondary stimulation with mycobacterial ligands. In our murine model, enhanced killing capacity is also demonstrated. Despite this switch in phenotype, IL-4/13 trained murine macrophages do not demonstrate M1-typical metabolism, instead retaining heightened use of OXPHOS. Moreover, inhibition of OXPHOS with oligomycin, 2-deoxy glucose or BPTES all impeded heightened pro-inflammatory cytokine responses from IL-4/13 trained macrophages. Lastly, this work identifies that IL-10 attenuates protective IL-4/13 training, impeding pro-inflammatory and bactericidal mechanisms. In summary, this work provides new and unexpected insight into alternative macrophage activation states in the context of mycobacterial infection.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/ncbph43m85.3&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/ncbph43m85.3&type=result"></script>');
-->
</script>
pmid: 33484910
The majority of in vitro studies assessing cancer treatments are performed in two-dimensional (2D) monolayers and are subsequently validated in in vivo animal models. However, 2D models fail to accurately model the tumour microenvironment. Furthermore, animal models are not directly applicable to mimic the human scenario. Three-dimensional (3D) culture models may help to address the discrepancies of 2D and animal models. When cancer cells escape the primary tumour, they can invade at distant organs building secondary tumours, called metastasis. The development of metastasis leads to a dramatic decrease in the life expectancy of patients. Therefore, 3D systems to model the microenvironment of metastasis have also been developed. Several studies have demonstrated changes in cell behaviour and gene expression when cells are cultured in 3D compared to 2D and concluded a better comparability to cells in vivo. Of special importance is the effect seen in response to anti-cancer treatments as models are built primarily to serve as drug-testing platforms. This review highlights these changes between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate tumours. In addition to models aiming to mimic the primary tumour site, the effects of 3D cell culturing in bone metastasis models are also described. STATEMENT OF SIGNIFICANCE: Most in vitro studies in cancer research are performed in 2D and are subsequently validated in in vivo animal models. However, both models possess numerous limitations: 2D models fail to accurately model the tumour microenvironment while animal models are expensive, time-consuming and can differ considerably from humans. It is accepted that the cancer microenvironment plays a critical role in the disease, thus, 3D models have been proposed as a potential solution to address the discrepancies of 2D and animal models. This review highlights changes in cell behaviour, including proliferation, gene expression and chemosensitivity, between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate cancer as well as bone metastasis.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.actbio.2021.01.023&type=result"></script>');
-->
</script>
bronze |
citations | 31 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.actbio.2021.01.023&type=result"></script>');
-->
</script>
In this paper, we report on the structural and electronic properties of polycrystalline gallium antimonide (poly-GaSb) films (50–250 nm) deposited on p+ Si/SiO2 by metalorganic vapour phase epitaxy at 475 °C. GaSb films grown on semi-insulating GaAs substrates are included as comparative samples. In all cases, the unintentionally doped GaSb is p-type, with a hole concentration in the range of 2 × 1016 to 2 × 1017 cm−3. Exceptional hole mobilities are measured for polycrystalline GaSb on SiO2 in the range of 9–66 cm2/Vs, exceeding the reported values for many other semiconductors grown at low temperatures. A mobility of 9.1 cm2/Vs is recorded for an amorphous GaSb layer in a poly-GaAs/amorphous GaSb heterostructure. Mechanisms limiting the mobility in the GaSb thin films are investigated. It is found that for the GaSb grown directly on GaAs, the mobility is phonon-limited, while the GaSb deposited directly on SiO2 has a Coulomb scattering limited mobility, and the poly-GaAs/amorphous GaSb heterostructure on SiO2 displays a mobility which is consistent with variable-range-hopping. GaSb films grown at low temperatures demonstrate a far greater potential for implementation in p-channel devices than for implementation in ICs.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cryst11111348&type=result"></script>');
-->
</script>
gold |
citations | 3 | |
popularity | Top 10% | |
influence | Average | |
impulse | Average |