search

  • Dataset
  • Canadian Institutes of Health Resea...
  • CA
  • English

Relevance
arrow_drop_down
  • A Data Guide for this study is available as a web page and for download. The National Longitudinal Study of Adolescent to Adult Health (Add Health), 1994-2008 [Public Use] is a longitudinal study of a nationally representative sample of U.S. adolescents in grades 7 through 12 during the 1994-1995 school year. The Add Health cohort was followed into young adulthood with four in-home interviews, the most recent conducted in 2008 when the sample was aged 24-32. Add Health combines longitudinal survey data on respondents' social, economic, psychological, and physical well-being with contextual data on the family, neighborhood, community, school, friendships, peer groups, and romantic relationships. Add Health Wave I data collection took place between September 1994 and December 1995, and included both an in-school questionnaire and in-home interview. The in-school questionnaire was administered to more than 90,000 students in grades 7 through 12, and gathered information on social and demographic characteristics of adolescent respondents, education and occupation of parents, household structure, expectations for the future, self-esteem, health status, risk behaviors, friendships, and school-year extracurricular activities. All students listed on a sample school's roster were eligible for selection into the core in-home interview sample. In-home interviews included topics such as health status, health-facility utilization, nutrition, peer networks, decision-making processes, family composition and dynamics, educational aspirations and expectations, employment experience, romantic and sexual partnerships, substance use, and criminal activities. A parent, preferably the resident mother, of each adolescent respondent interviewed in Wave I was also asked to complete an interviewer-assisted questionnaire covering topics such as inheritable health conditions, marriages and marriage-like relationships, neighborhood characteristics, involvement in volunteer, civic, and school activities, health-affecting behaviors, education and employment, household income and economic assistance, parent-adolescent communication and interaction, parent's familiarity with the adolescent's friends and friends' parents. Add Health data collection recommenced for Wave II from April to August 1996, and included almost 15,000 follow-up in-home interviews with adolescents from Wave I. Interview questions were generally similar to Wave I, but also included questions about sun exposure and more detailed nutrition questions. Respondents were asked to report their height and weight during the course of the interview, and were also weighed and measured by the interviewer. From August 2001 to April 2002, Wave III data were collected through in-home interviews with 15,170 Wave I respondents (now 18 to 26 years old), as well as interviews with their partners. Respondents were administered survey questions designed to obtain information about family, relationships, sexual experiences, childbearing, and educational histories, labor force involvement, civic participation, religion and spirituality, mental health, health insurance, illness, delinquency and violence, gambling, substance abuse, and involvement with the criminal justice system. High School Transcript Release Forms were also collected at Wave III, and these data comprise the Education Data component of the Add Health study. Wave IV in-home interviews were conducted in 2008 and 2009 when the original Wave I respondents were 24 to 32 years old. Longitudinal survey data were collected on the social, economic, psychological, and health circumstances of respondents, as well as longitudinal geographic data. Survey questions were expanded on educational transitions, economic status and financial resources and strains, sleep patterns and sleep quality, eating habits and nutrition, illnesses and medications, physical activities, emotional content and quality of current or most recent romantic/cohabiting/marriage relationships, and maltreatment during childhood by caregivers. Dates and circumstances of key life events occurring in young adulthood were also recorded, including a complete marriage and cohabitation history, full pregnancy and fertility histories from both men and women, an educational history of dates of degrees and school attendance, contact with the criminal justice system, military service, and various employment events, including the date of first and current jobs, with respective information on occupation, industry, wages, hours, and benefits. Finally, physical measurements and biospecimens were also collected at Wave IV, and included anthropometric measures of weight, height and waist circumference, cardiovascular measures such as systolic blood pressure, diastolic blood pressure, and pulse, metabolic measures from dried blood spots assayed for lipids, glucose, and glycosylated hemoglobin (HbA1c), measures of inflammation and immune function, including High sensitivity C-reactive protein (hsCRP) and Epstein-Barr virus (EBV). Datasets: DS0: Study-Level Files DS1: Wave I: In-Home Questionnaire, Public Use Sample DS2: Wave I: Public Use Contextual Database DS3: Wave I: Network Variables DS4: Wave I: Public Use Grand Sample Weights DS5: Wave II: In-Home Questionnaire, Public Use Sample DS6: Wave II: Public Use Contextual Database DS7: Wave II: Public Use Grand Sample Weights DS8: Wave III: In-Home Questionnaire, Public Use Sample DS9: Wave III: In-Home Questionnaire, Public Use Sample (Section 17: Relationships) DS10: Wave III: In-Home Questionnaire, Public Use Sample (Section 18: Pregnancies) DS11: Wave III: In-Home Questionnaire, Public Use Sample (Section 19: Relationships in Detail) DS12: Wave III: In-Home Questionnaire, Public Use Sample (Section 22: Completed Pregnancies) DS13: Wave III: In-Home Questionnaire, Public Use Sample (Section 23: Current Pregnancies) DS14: Wave III: In-Home Questionnaire, Public Use Sample (Section 24: Live Births) DS15: Wave III: In-Home Questionnaire, Public Use Sample (Section 25: Children and Parenting) DS16: Wave III: Public Use Education Data DS17: Wave III: Public Use Graduation Data DS18: Wave III: Public Use Education Data Weights DS19: Wave III: Add Health School Weights DS20: Wave III: Peabody Picture Vocabulary Test (PVT), Public Use DS21: Wave III: Public In-Home Weights DS22: Wave IV: In-Home Questionnaire, Public Use Sample DS23: Wave IV: In-Home Questionnaire, Public Use Sample (Section 16B: Relationships) DS24: Wave IV: In-Home Questionnaire, Public Use Sample (Section 16C: Relationships) DS25: Wave IV: In-Home Questionnaire, Public Use Sample (Section 18: Pregnancy Table) DS26: Wave IV: In-Home Questionnaire, Public Use Sample (Section 19: Live Births) DS27: Wave IV: In-Home Questionnaire, Public Use Sample (Section 20A: Children and Parenting) DS28: Wave IV: Biomarkers, Measures of Inflammation and Immune Function DS29: Wave IV: Biomarkers, Measures of Glucose Homeostasis DS30: Wave IV: Biomarkers, Lipids DS31: Wave IV: Public Use Weights Wave I: The Stage 1 in-school sample was a stratified, random sample of all high schools in the United States. A school was eligible for the sample if it included an 11th grade and had a minimum enrollment of 30 students. A feeder school -- a school that sent graduates to the high school and that included a 7th grade -- was also recruited from the community. The in-school questionnaire was administered to more than 90,000 students in grades 7 through 12. The Stage 2 in-home sample of 27,000 adolescents consisted of a core sample from each community, plus selected special over samples. Eligibility for over samples was determined by an adolescent's responses on the in-school questionnaire. Adolescents could qualify for more than one sample.; Wave II: The Wave II in-home interview surveyed almost 15,000 of the same students one year after Wave I.; Wave III: The in-home Wave III sample consists of over 15,000 Wave I respondents who could be located and re-interviewed six years later.; Wave IV: All original Wave I in-home respondents were eligible for in-home interviews at Wave IV. At Wave IV, the Add Health sample was dispersed across the nation with respondents living in all 50 states. Administrators were able to locate 92.5% of the Wave IV sample and interviewed 80.3% of eligible sample members. ; For additional information on sampling, including detailed information on special oversamples, please see the Add Health Study Design page. Add Health was developed in response to a mandate from the U.S. Congress to fund a study of adolescent health. Waves I and II focused on the forces that may influence adolescents' health and risk behaviors, including personal traits, families, friendships, romantic relationships, peer groups, schools, neighborhoods, and communities. As participants aged into adulthood, the scientific goals of the study expanded and evolved. Wave III explored adolescent experiences and behaviors related to decisions, behavior, and health outcomes in the transition to adulthood. Wave IV expanded to examine developmental and health trajectories across the life course of adolescence into young adulthood, using an integrative study design which combined social, behavioral, and biomedical measures data collection. Response Rates: Response rates for each wave were as follows: Wave I: 79 percent; Wave II: 88.6 percent; Wave III: 77.4 percent; Wave IV: 80.3 percent; Adolescents in grades 7 through 12 during the 1994-1995 school year. Respondents were geographically located in the United States. audio computer-assisted self interview (ACASI) computer-assisted personal interview (CAPI) computer-assisted self interview (CASI) paper and pencil interview (PAPI) face-to-face interview

    Inter-university Con...arrow_drop_down
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    65
    citations65
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • Authors: Choudhary, Neha; Scheiber, Hayden; Zhang, Jiale; Patrick, Brian O.; +2 Authors

    Related Article: Neha Choudhary, Hayden Scheiber, Jiale Zhang, Brian O. Patrick, María de Guadalupe Jaraquemada-Peláez, Chris Orvig|2021|Inorg.Chem.|60|12855|doi:10.1021/acs.inorgchem.1c01175

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Choudhary, Neha; Jaraquemada-Peláez, Marı́a de Guadalupe; Zarschler, Kristof; Wang, Xiaozhu; +4 Authors

    Related Article: Neha Choudhary, Marı́a de Guadalupe Jaraquemada-Peláez, Kristof Zarschler, Xiaozhu Wang, Valery Radchenko, Manja Kubeil, Holger Stephan, Chris Orvig|2020|Inorg.Chem.|59|5728|doi:10.1021/acs.inorgchem.0c00509

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Garai, Sumanta; Leo, Luciana M.; Szczesniak, Anna-Maria; Hurst, Dow P.; +14 Authors

    Related Article: Sumanta Garai, Luciana M. Leo, Anna-Maria Szczesniak, Dow P. Hurst, Peter C. Schaffer, Ayat Zagzoog, Tallan Black, Jeffrey R. Deschamps, Elke Miess, Stefan Schulz, David R. Janero, Alex Straiker, Roger G. Pertwee, Mary E. Abood, Melanie E. M. Kelly, Patricia H. Reggio, Robert B. Laprairie, Ganesh A. Thakur|2021|J.Med.Chem.|64|8104|doi:10.1021/acs.jmedchem.1c00040

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bernhardt, Boris C.; Fadaie, Fatemeh; Liu, Min; Caldairou, Benoit; +6 Authors

    OBJECTIVE. To assess whether HS severity is mirrored at the level of large-scale networks. METHODS. We studied preoperative high-resolution anatomical and diffusion-weighted MRI of 44 TLE patients with histopathological diagnosis of HS (n=25; TLE-HS) and isolated gliosis (n=19; TLE-G), and 25 healthy controls. Hippocampal measurements included surface-based subfield mapping of atrophy and T2 hyperintensity indexing cell loss and gliosis, respectively. Whole-brain connectomes were generated via diffusion tractography and examined using graph theory along with a novel network control theory paradigm which simulates functional dynamics from structural network data. RESULTS. Compared to controls, we observed markedly increased path length and decreased clustering in TLE-HS compared to controls, indicating lower global and local network efficiency, while TLE-G showed only subtle alterations. Similarly, network controllability was lower in TLE-HS only, suggesting limited range of functional dynamics. Hippocampal imaging markers were positively associated with macroscale network alterations, particularly in ipsilateral CA1-3. Systematic assessment across several networks revealed maximal changes in the hippocampal circuity. Findings were consistent when correcting for cortical thickness, suggesting independence from grey matter atrophy. CONCLUSIONS. Severe HS is associated with marked remodeling of connectome topology and structurally-governed functional dynamics in TLE, as opposed to isolated gliosis which has negligible effects. Cell loss, particularly in CA1-3, may exert a cascading effect on brain-wide connectomes, underlining coupled disease processes across multiple scales. Data_phen_conn_dryadPhenotypic information and mean connectome feature data for Bernhardt et al. (2019) Temporal lobe epilepsy: hippocampal pathology modulates white matter connectome topology and controllability. Neurology

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DANS-EASYarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DANS-EASY
    Dataset . 2019
    Data sources: B2FIND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DRYAD; ZENODO; NARCIS
    Dataset . 2019
    License: CC 0
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility20
    visibilityviews20
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DANS-EASYarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DANS-EASY
      Dataset . 2019
      Data sources: B2FIND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DRYAD; ZENODO; NARCIS
      Dataset . 2019
      License: CC 0
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Mossin, S.; Tran, B.L.; Adhikari, D.; Pink, M.; +5 Authors

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures. Related Article: S.Mossin, B.L.Tran, D.Adhikari, M.Pink, F.W.Heinemann, J.Sutter, R.K.Szilagyi, K.Meyer, D.J.Mindiola|2012|J.Am.Chem.Soc.|134|13651|doi:10.1021/ja302660k

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Carrasco, Andres; Brown, Trecia A.; Lomber, Stephen G.;

    Assemblies of vertically connected neurons in the cerebral cortex form information processing units (columns) that participate in the distribution and segregation of sensory signals. Despite well-accepted models of columnar architecture, functional mechanisms of inter-laminar communication remain poorly understood. Hence, the purpose of the present investigation was to examine the effects of sensory information features on columnar response properties. Using acute recording techniques, extracellular response activity was collected from the right hemisphere of eight mature cats (felis catus). Recordings were conducted with multichannel electrodes that permitted the simultaneous acquisition of neuronal activity within primary auditory cortex columns. Neuronal responses to simple (pure tones), complex (noise burst and frequency modulated sweeps), and ecologically relevant (con-specific vocalizations) acoustic signals were measured. Collectively, the present investigation demonstrates that despite consistencies in neuronal tuning (characteristic frequency), irregularities in discharge activity between neurons of individual A1 columns increase as a function of spectral (signal complexity) and temporal (duration) acoustic variations. Multi-unit responses to acoustic signals within A1 columnsThe data set consists of eight multi-unit electrophysiology experiments located within a single .zip file. Acoustic feature (signal type and duration) are in subfolders where data rasters for each recording session conducted can be found. Columns represent time and rows trial number. Data is presented as Matlab files.DRYAD.zip

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DANS-EASYarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DANS-EASY
    Dataset . 2014
    Data sources: B2FIND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility21
    visibilityviews21
    downloaddownloads6
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DANS-EASYarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DANS-EASY
      Dataset . 2014
      Data sources: B2FIND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rashid, Asim J.; Yan, Chen; Mercaldo, Valentina; Hsiang, Hwa-Lin; +9 Authors

    Collections of cells called engrams are thought to represent memories. Although there has been progress in identifying and manipulating single engrams, little is known about how multiple engrams interact to influence memory. In lateral amygdala (LA), neurons with increased excitability during training outcompete their neighbors for allocation to an engram. We examined whether competition based on neuronal excitability also governs the interaction between engrams. Mice received two distinct fear conditioning events separated by different intervals. LA neuron excitability was optogenetically manipulated and revealed a transient competitive process that integrates memories for events occurring closely in time (coallocating overlapping populations of neurons to both engrams) and separates memories for events occurring at distal times (disallocating nonoverlapping populations to each engram). Rashid et al Science 2016- Data for Figs 1-4, S1-S9Excel file with all data presented in manuscript (each sheet corresponds to specific figures as indicated).Rashid et al Science 2016.xlsx

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DRYAD; Federated Res...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DANS-EASY
    Dataset . 2016
    Data sources: B2FIND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility27
    visibilityviews27
    downloaddownloads8
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DRYAD; Federated Res...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DANS-EASY
      Dataset . 2016
      Data sources: B2FIND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: McKinnie, Shaun M. K.; Wang, Wang; Fischer, Conrad; McDonald, Tyler; +5 Authors

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures. Related Article: Shaun M. K. McKinnie, Wang Wang, Conrad Fischer, Tyler McDonald, Kevin R. Kalin, Xavier Iturrioz, Catherine Llorens-Cortes, Gavin Y. Oudit, and John C. Vederas|2017|J.Med.Chem.|60|6408|doi:10.1021/acs.jmedchem.7b00723

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhan, Shing Hei; Drori, Michal; Goldberg, Emma E.; Otto, Sarah P.; +1 Authors

    Premise of the study: Polyploidization is a common and recurring phenomenon in plants and is often thought to be a mechanism of "instant speciation." Whether polyploidization is associated with the formation of new species ("cladogenesis") or simply occurs over time within a lineage ("anagenesis") has never, however, been assessed systematically. Methods: Here, we tested this hypothesis using phylogenetic and karyotypic information from 235 plant genera (mostly angiosperms). We first constructed a large database of combined sequence and chromosome number data sets using an automated procedure. We then applied likelihood models (ClaSSE) that estimate the degree of synchronization between polyploidization and speciation events in maximum likelihood and Bayesian frameworks. Key results: Our maximum likelihood analysis indicated that 35 genera supported a model that includes cladogenetic transitions over a model with only anagenetic transitions, whereas three genera supported a model that incorporates anagenetic transitions over one with only cladogenetic transitions. Furthermore, the Bayesian analysis supported a preponderance of cladogenetic change in four genera but did not support a preponderance of anagenetic change in any genus. Conclusions: Overall, these phylogenetic analyses provide the first broad confirmation that polyploidization is temporally associated with speciation events, suggesting that it is indeed a major speciation mechanism in plants, at least in some genera. PloiDBPhylogenetic trees inferred using MrBayes, ploidy estimates using ChromEvol, and TPL-based genus species diversity estimates for 223 genera.ploidb_dryad.tar.gz

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DANS-EASYarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DANS-EASY
    Dataset . 2016
    Data sources: B2FIND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Borealis
    Dataset . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility26
    visibilityviews26
    downloaddownloads4
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DANS-EASYarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DANS-EASY
      Dataset . 2016
      Data sources: B2FIND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Borealis
      Dataset . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • A Data Guide for this study is available as a web page and for download. The National Longitudinal Study of Adolescent to Adult Health (Add Health), 1994-2008 [Public Use] is a longitudinal study of a nationally representative sample of U.S. adolescents in grades 7 through 12 during the 1994-1995 school year. The Add Health cohort was followed into young adulthood with four in-home interviews, the most recent conducted in 2008 when the sample was aged 24-32. Add Health combines longitudinal survey data on respondents' social, economic, psychological, and physical well-being with contextual data on the family, neighborhood, community, school, friendships, peer groups, and romantic relationships. Add Health Wave I data collection took place between September 1994 and December 1995, and included both an in-school questionnaire and in-home interview. The in-school questionnaire was administered to more than 90,000 students in grades 7 through 12, and gathered information on social and demographic characteristics of adolescent respondents, education and occupation of parents, household structure, expectations for the future, self-esteem, health status, risk behaviors, friendships, and school-year extracurricular activities. All students listed on a sample school's roster were eligible for selection into the core in-home interview sample. In-home interviews included topics such as health status, health-facility utilization, nutrition, peer networks, decision-making processes, family composition and dynamics, educational aspirations and expectations, employment experience, romantic and sexual partnerships, substance use, and criminal activities. A parent, preferably the resident mother, of each adolescent respondent interviewed in Wave I was also asked to complete an interviewer-assisted questionnaire covering topics such as inheritable health conditions, marriages and marriage-like relationships, neighborhood characteristics, involvement in volunteer, civic, and school activities, health-affecting behaviors, education and employment, household income and economic assistance, parent-adolescent communication and interaction, parent's familiarity with the adolescent's friends and friends' parents. Add Health data collection recommenced for Wave II from April to August 1996, and included almost 15,000 follow-up in-home interviews with adolescents from Wave I. Interview questions were generally similar to Wave I, but also included questions about sun exposure and more detailed nutrition questions. Respondents were asked to report their height and weight during the course of the interview, and were also weighed and measured by the interviewer. From August 2001 to April 2002, Wave III data were collected through in-home interviews with 15,170 Wave I respondents (now 18 to 26 years old), as well as interviews with their partners. Respondents were administered survey questions designed to obtain information about family, relationships, sexual experiences, childbearing, and educational histories, labor force involvement, civic participation, religion and spirituality, mental health, health insurance, illness, delinquency and violence, gambling, substance abuse, and involvement with the criminal justice system. High School Transcript Release Forms were also collected at Wave III, and these data comprise the Education Data component of the Add Health study. Wave IV in-home interviews were conducted in 2008 and 2009 when the original Wave I respondents were 24 to 32 years old. Longitudinal survey data were collected on the social, economic, psychological, and health circumstances of respondents, as well as longitudinal geographic data. Survey questions were expanded on educational transitions, economic status and financial resources and strains, sleep patterns and sleep quality, eating habits and nutrition, illnesses and medications, physical activities, emotional content and quality of current or most recent romantic/cohabiting/marriage relationships, and maltreatment during childhood by caregivers. Dates and circumstances of key life events occurring in young adulthood were also recorded, including a complete marriage and cohabitation history, full pregnancy and fertility histories from both men and women, an educational history of dates of degrees and school attendance, contact with the criminal justice system, military service, and various employment events, including the date of first and current jobs, with respective information on occupation, industry, wages, hours, and benefits. Finally, physical measurements and biospecimens were also collected at Wave IV, and included anthropometric measures of weight, height and waist circumference, cardiovascular measures such as systolic blood pressure, diastolic blood pressure, and pulse, metabolic measures from dried blood spots assayed for lipids, glucose, and glycosylated hemoglobin (HbA1c), measures of inflammation and immune function, including High sensitivity C-reactive protein (hsCRP) and Epstein-Barr virus (EBV). Datasets: DS0: Study-Level Files DS1: Wave I: In-Home Questionnaire, Public Use Sample DS2: Wave I: Public Use Contextual Database DS3: Wave I: Network Variables DS4: Wave I: Public Use Grand Sample Weights DS5: Wave II: In-Home Questionnaire, Public Use Sample DS6: Wave II: Public Use Contextual Database DS7: Wave II: Public Use Grand Sample Weights DS8: Wave III: In-Home Questionnaire, Public Use Sample DS9: Wave III: In-Home Questionnaire, Public Use Sample (Section 17: Relationships) DS10: Wave III: In-Home Questionnaire, Public Use Sample (Section 18: Pregnancies) DS11: Wave III: In-Home Questionnaire, Public Use Sample (Section 19: Relationships in Detail) DS12: Wave III: In-Home Questionnaire, Public Use Sample (Section 22: Completed Pregnancies) DS13: Wave III: In-Home Questionnaire, Public Use Sample (Section 23: Current Pregnancies) DS14: Wave III: In-Home Questionnaire, Public Use Sample (Section 24: Live Births) DS15: Wave III: In-Home Questionnaire, Public Use Sample (Section 25: Children and Parenting) DS16: Wave III: Public Use Education Data DS17: Wave III: Public Use Graduation Data DS18: Wave III: Public Use Education Data Weights DS19: Wave III: Add Health School Weights DS20: Wave III: Peabody Picture Vocabulary Test (PVT), Public Use DS21: Wave III: Public In-Home Weights DS22: Wave IV: In-Home Questionnaire, Public Use Sample DS23: Wave IV: In-Home Questionnaire, Public Use Sample (Section 16B: Relationships) DS24: Wave IV: In-Home Questionnaire, Public Use Sample (Section 16C: Relationships) DS25: Wave IV: In-Home Questionnaire, Public Use Sample (Section 18: Pregnancy Table) DS26: Wave IV: In-Home Questionnaire, Public Use Sample (Section 19: Live Births) DS27: Wave IV: In-Home Questionnaire, Public Use Sample (Section 20A: Children and Parenting) DS28: Wave IV: Biomarkers, Measures of Inflammation and Immune Function DS29: Wave IV: Biomarkers, Measures of Glucose Homeostasis DS30: Wave IV: Biomarkers, Lipids DS31: Wave IV: Public Use Weights Wave I: The Stage 1 in-school sample was a stratified, random sample of all high schools in the United States. A school was eligible for the sample if it included an 11th grade and had a minimum enrollment of 30 students. A feeder school -- a school that sent graduates to the high school and that included a 7th grade -- was also recruited from the community. The in-school questionnaire was administered to more than 90,000 students in grades 7 through 12. The Stage 2 in-home sample of 27,000 adolescents consisted of a core sample from each community, plus selected special over samples. Eligibility for over samples was determined by an adolescent's responses on the in-school questionnaire. Adolescents could qualify for more than one sample.; Wave II: The Wave II in-home interview surveyed almost 15,000 of the same students one year after Wave I.; Wave III: The in-home Wave III sample consists of over 15,000 Wave I respondents who could be located and re-interviewed six years later.; Wave IV: All original Wave I in-home respondents were eligible for in-home interviews at Wave IV. At Wave IV, the Add Health sample was dispersed across the nation with respondents living in all 50 states. Administrators were able to locate 92.5% of the Wave IV sample and interviewed 80.3% of eligible sample members. ; For additional information on sampling, including detailed information on special oversamples, please see the Add Health Study Design page. Add Health was developed in response to a mandate from the U.S. Congress to fund a study of adolescent health. Waves I and II focused on the forces that may influence adolescents' health and risk behaviors, including personal traits, families, friendships, romantic relationships, peer groups, schools, neighborhoods, and communities. As participants aged into adulthood, the scientific goals of the study expanded and evolved. Wave III explored adolescent experiences and behaviors related to decisions, behavior, and health outcomes in the transition to adulthood. Wave IV expanded to examine developmental and health trajectories across the life course of adolescence into young adulthood, using an integrative study design which combined social, behavioral, and biomedical measures data collection. Response Rates: Response rates for each wave were as follows: Wave I: 79 percent; Wave II: 88.6 percent; Wave III: 77.4 percent; Wave IV: 80.3 percent; Adolescents in grades 7 through 12 during the 1994-1995 school year. Respondents were geographically located in the United States. audio computer-assisted self interview (ACASI) computer-assisted personal interview (CAPI) computer-assisted self interview (CASI) paper and pencil interview (PAPI) face-to-face interview

    Inter-university Con...arrow_drop_down
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    65
    citations65
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!