search
65,947 Research products

  • 010304 chemical physics

10
arrow_drop_down
Relevance
arrow_drop_down
  • Qian Zhou; Yinghui Wang; Xiaojuan Dai; Chunfan Yang; +2 Authors

    One-electron oxidation of adenine (A) leads initially to the formation of adenine radical cation (A•+). Subsequent deprotonation of A•+ can provoke deoxyribonucleic acid (DNA) damage, which further causes senescence, cancer formation, and even cell death. However, compared with considerable reports on A•+ reactions in free deoxyadenosine (dA) and duplex DNA, studies in non-B-form DNA that play critical biological roles are rare at present. It is thus of vital importance to explore non-B-form DNA, among which the triplex is an emerging topic. Herein, we investigate the deprotonation behavior of A•+ in the TAT triplex with continuous A bases by time-resolved laser flash photolysis. The rate constants for the one-oxidation of triplex 8.4 × 108 M−1 s−1 and A•+ deprotonation 1.3 × 107 s−1 are obtained. The kinetic isotope effect of A•+ deprotonation in the TAT triplex is 1.8, which is characteristic of a direct release of the proton into the solvent similar to free base dA. It is thus elucidated that the A•+ proton bound with the third strand is most likely to be released into the solvent because of the weaker Hoogsteen H-bonding interaction and the presence of the highly mobile hydration waters within the third strand. Additionally, it is confirmed through Fourier transform infrared spectroscopy that the deprotonation of A•+ results in the dissociation of the third strand and disruption of the secondary structure of the triplex. These results provide valuable kinetic data and in-depth mechanistic insights for understanding the adenine oxidative DNA damage in the triplex.One-electron oxidation of adenine (A) leads initially to the formation of adenine radical cation (A•+). Subsequent deprotonation of A•+ can provoke deoxyribonucleic acid (DNA) damage, which further causes senescence, cancer formation, and even cell death. However, compared with considerable reports on A•+ reactions in free deoxyadenosine (dA) and duplex DNA, studies in non-B-form DNA that play critical biological roles are rare at present. It is thus of vital importance to explore non-B-form DNA, among which the triplex is an emerging topic. Herein, we investigate the deprotonation behavior of A•+ in the TAT triplex with continuous A bases by time-resolved laser flash photolysis. The rate constants for the one-oxidation of triplex 8.4 × 108 M−1 s−1 and A•+ deprotonation 1.3 × 107 s−1 are obtained. The kinetic isotope effect of A•+ deprotonation in the TAT triplex is 1.8, which is characteristic of a direct release of the proton into the solvent similar to free base dA. It is thus elucidated that the A•+ p...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bhargava Anusuri;

    Abstract Modeling the physical conditions of interstellar medium requires knowledge of accurate rate coefficients for collisional excitation of molecules by the abundant chemical species like He and H2. The present paper aims to study transitions in the low rotational levels in the ground vibrational state of CN+(X 1Σ+) by collisions with helium atoms. We computed ab initio two-dimensional (rigid-rotor) potential energy surface for the He-CN+ van der Waals collision complex using multi-reference configuration interaction method employing augmented correlation consistent polarized valence quadruple-ζ basis set. The bound-states of the van der Waals complex are obtained by coupled channel approach. The state-to-state rotational excitation cross sections are computed by exact close-coupling quantum mechanical formalism up to center of mass collision energy of 2000 cm−1. The corresponding rate coefficients are obtained up to 300 K temperature.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computational and Th...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Marin Chabot; K. Béroff; Emmanuel Dartois; Thomas Pino;

    Synopsis The interstellar medium contains both polycyclic aromatic hydrocarbons and cosmic rays. The frontal impact of a single heavy cosmic ray strips out many electrons. The highly charged species then relax by multi-fragmentation, potentially feeding the interstellar medium with hydrocarbon chains. We model both ionization(s) and fragmentation processes and compute the fragments production rates of particular interest for astrophysical models.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    César Mogo; João Brandão;

    The MReaDy program was designed for studying Multiprocess Reactive Dynamic systems, that is, complex chemical systems involving different and concurrent reactions. It builds a global potential energy surface integrating a variety of potential energy surfaces, each one of them representing an elementary reaction expected to play a role in the chemical process. For each elementary reaction, energy continuity problems may happen in the transition between potential energy surfaces due to differences in the functional form for each of the fragments, especially if built by different authors. A N-dimensional switch function is introduced in MReaDy in order to overcome such a problem. As an example, results of a collision trajectory calculation for H-2 + OH -> H3O are presented, showing smooth transition in the potential energy, leading to conservation in the total energy. Calculations for a hydrogen combustion system from 1000 K up to 4000 K shows a variation of 0.012% when compared to the total energy of the system. VC 2016 Wiley Periodicals, Inc.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sapientia Repositóri...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility119
    visibilityviews119
    downloaddownloads59
    Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Emanuele Coccia;

    We report an extension of diffusion Monte Carlo (DMC) to the calculation of the molecular rotational energies by means of the generalized, symmetry-adapted, imaginary-time correlation functions (SAITCFs) originally introduced in the reptation quantum Monte Carlo (RQMC) framework (Skrbic in J Phys Chem A 111:12749, 2007). We studied the a-type and b-type rotational lines of the CO( $$^{4}$$ He) $$_{N}$$ clusters with $$N=$$ 1–8 that correlate, in the dimer limit, with the end-over-end and free-rotor transitions. We compare the SAITCF–DMC results with accurate DVR (for the dimer case), RQMC and other DMC data, and with reference experimental findings (Surin in Phys Rev Lett 101:233401, 2008). A good agreement is generally found, but a systematic underestimation of the SAITCF–DMC rotational energies of the b-type series is observed. Sources of inaccuracy in our theoretical approach and in the computational protocol are discussed and analyzed in detail.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Low Tempe...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • Aude Simon; Mathias Rapacioli; Eric Michoulier; Linjie Zheng; +2 Authors

    This review is dedicated to the application of the self-consistent-charge density-functional-based tight-binding (SCC-DFTB) approach to describe the structures, energetics, thermodynamic and spectr...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Jan Linderberg;

    Abstract Attempting to survey and review some developments in the design and use of atomic basis sets for molecular electronic structure calculations from the perspective of Per-Olov Lowdin's contributions this chapter is offered as a contribution to the celebration of the centennial of his birth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PURE Aarhus University
    Part of book or chapter of book . 2017
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aravinda Munasinghe; Akash Mathavan; Akshay Mathavan; Ping Lin; +1 Authors

    Therapeutic proteins have increasingly been used in modern medical applications, but their effectiveness is limited by factors such as stability and blood circulation time. Recently, there has been significant research into covalently linking polyethylene glycol polymer chains (PEG) to proteins, known as PEGylation, to mitigate these issues. In this work, an atomistic molecular dynamics study of N-terminal conjugated PEG-BSA (bovine serum albumin) was conducted with varying PEG molecular weights (2, 5, 10, and 20 kDa) to probe PEG-BSA interactions and evaluate the effect of polymer length on dynamics. It was found that the affinity of PEG toward the protein surface increased as a function of PEG molecular weight and that a certain weight (around 10 kDa) was required to promote protein?polymer interactions. Additionally, preferential interactions were monitored through formed contacts and hotspots were identified. PEG chains coordinating in looplike conformations were found near lysine residues. Also, it was found that hydrophobic interactions played an important role in promoting PEG-BSA interactions as the PEG molecular weight increased. The results provide insight into underlying mechanisms behind transitions in PEG conformations and will aid in future design of effective PEGylated drug molecules.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Physi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Michele Cutini; Marta Corno; Piero Ugliengo;

    We studied the sensitivity of the energetic and geometrical features of the proline ring (pyrrolidine) to the quantum mechanical computational approach by adopting the proline monomer, trimer, and polymer, as simplified collagen protein models. Within the Density Functional Theory (DFT) approach, we tested the ability of different functionals (GGA PBE and the hybrid B3LYP), added with a posteriori empirical dispersion corrections (D), to predict the conformational potential energy surface of the five-membered heterocycle pyrrolidine ring for the above models, dictating the collagen main features. We also compared the DFT-D results with those from the recently proposed cost-effective HF-3c method and our variant HF-3c-027, both based on Hartree-Fock Hamiltonian and Gaussian minimal basis set properly corrected for basis set superposition error, structure deficiencies, and dispersion interactions. We found that dispersion interactions are essential to destabilize specific conformers. While the HF-3c and its HF-3c-027 variant are unreliable to predict accurately the energy of the ring conformers, structures are accurate. Indeed, the cost-effective DFT-D//HF-3c-027 approach in which the energetic is from the accurate DFT-D method on HF-3c-027 structures provides energetic in line with that derived by the costly DFT-D//DFT-D approach, paving the way to simulate more realistic collagen models of much larger size. The adoption of either PBE or B3LYP functional for the electronic part of the DFT-D method gives very similar results, recommending the first as the most cost-effective method for simulating large collagen models. The predicted most stable conformation computed for the periodic poly proline (type II) model allows for a higher flexibility, in agreement with experimental studies on collagen protein. The present results open the way to large-scale calculations of the collagen/hydroxyapatite system, crucial for understanding the atomistic details in bones and teeth.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Abir Ganguly; Trung Quan Luong; Oliver Brylski; Michael Dirkmann; +6 Authors

    To improve our mechanistic understanding of zinc metalloenzymes, we report a joint computational and experimental study of a minimal carbonic anhydrase (CA) mimic, a 22-residue Zn-finger hydrolase. We combine classical molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) geometry optimizations, and QM/MM free energy simulations with ambient and high-pressure kinetic measurements to investigate the mechanism of the hydrolysis of the substrate p-nitrophenylacetate (pNPA). The zinc center of the hydrolase prefers a pentacoordinated geometry, as found in most naturally occurring CAs and CA-like enzymes. Two possible mechanisms for the catalytic reaction are investigated. The first one is analogous to the commonly accepted mechanism for CA-like enzymes: a sequential pathway, in which a Zn2+-bound hydroxide acts as a nucleophile and the hydrolysis proceeds through a tetrahedral intermediate. The initial rate-limiting step of this reaction is the nucleophilic attack of the hydroxide...

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universitätsbibliogr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
65,947 Research products
  • Qian Zhou; Yinghui Wang; Xiaojuan Dai; Chunfan Yang; +2 Authors

    One-electron oxidation of adenine (A) leads initially to the formation of adenine radical cation (A•+). Subsequent deprotonation of A•+ can provoke deoxyribonucleic acid (DNA) damage, which further causes senescence, cancer formation, and even cell death. However, compared with considerable reports on A•+ reactions in free deoxyadenosine (dA) and duplex DNA, studies in non-B-form DNA that play critical biological roles are rare at present. It is thus of vital importance to explore non-B-form DNA, among which the triplex is an emerging topic. Herein, we investigate the deprotonation behavior of A•+ in the TAT triplex with continuous A bases by time-resolved laser flash photolysis. The rate constants for the one-oxidation of triplex 8.4 × 108 M−1 s−1 and A•+ deprotonation 1.3 × 107 s−1 are obtained. The kinetic isotope effect of A•+ deprotonation in the TAT triplex is 1.8, which is characteristic of a direct release of the proton into the solvent similar to free base dA. It is thus elucidated that the A•+ proton bound with the third strand is most likely to be released into the solvent because of the weaker Hoogsteen H-bonding interaction and the presence of the highly mobile hydration waters within the third strand. Additionally, it is confirmed through Fourier transform infrared spectroscopy that the deprotonation of A•+ results in the dissociation of the third strand and disruption of the secondary structure of the triplex. These results provide valuable kinetic data and in-depth mechanistic insights for understanding the adenine oxidative DNA damage in the triplex.One-electron oxidation of adenine (A) leads initially to the formation of adenine radical cation (A•+). Subsequent deprotonation of A•+ can provoke deoxyribonucleic acid (DNA) damage, which further causes senescence, cancer formation, and even cell death. However, compared with considerable reports on A•+ reactions in free deoxyadenosine (dA) and duplex DNA, studies in non-B-form DNA that play critical biological roles are rare at present. It is thus of vital importance to explore non-B-form DNA, among which the triplex is an emerging topic. Herein, we investigate the deprotonation behavior of A•+ in the TAT triplex with continuous A bases by time-resolved laser flash photolysis. The rate constants for the one-oxidation of triplex 8.4 × 108 M−1 s−1 and A•+ deprotonation 1.3 × 107 s−1 are obtained. The kinetic isotope effect of A•+ deprotonation in the TAT triplex is 1.8, which is characteristic of a direct release of the proton into the solvent similar to free base dA. It is thus elucidated that the A•+ p...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bhargava Anusuri;

    Abstract Modeling the physical conditions of interstellar medium requires knowledge of accurate rate coefficients for collisional excitation of molecules by the abundant chemical species like He and H2. The present paper aims to study transitions in the low rotational levels in the ground vibrational state of CN+(X 1Σ+) by collisions with helium atoms. We computed ab initio two-dimensional (rigid-rotor) potential energy surface for the He-CN+ van der Waals collision complex using multi-reference configuration interaction method employing augmented correlation consistent polarized valence quadruple-ζ basis set. The bound-states of the van der Waals complex are obtained by coupled channel approach. The state-to-state rotational excitation cross sections are computed by exact close-coupling quantum mechanical formalism up to center of mass collision energy of 2000 cm−1. The corresponding rate coefficients are obtained up to 300 K temperature.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computational and Th...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Marin Chabot; K. Béroff; Emmanuel Dartois; Thomas Pino;

    Synopsis The interstellar medium contains both polycyclic aromatic hydrocarbons and cosmic rays. The frontal impact of a single heavy cosmic ray strips out many electrons. The highly charged species then relax by multi-fragmentation, potentially feeding the interstellar medium with hydrocarbon chains. We model both ionization(s) and fragmentation processes and compute the fragments production rates of particular interest for astrophysical models.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    César Mogo; João Brandão;

    The MReaDy program was designed for studying Multiprocess Reactive Dynamic systems, that is, complex chemical systems involving different and concurrent reactions. It builds a global potential energy surface integrating a variety of potential energy surfaces, each one of them representing an elementary reaction expected to play a role in the chemical process. For each elementary reaction, energy continuity problems may happen in the transition between potential energy surfaces due to differences in the functional form for each of the fragments, especially if built by different authors. A N-dimensional switch function is introduced in MReaDy in order to overcome such a problem. As an example, results of a collision trajectory calculation for H-2 + OH -> H3O are presented, showing smooth transition in the potential energy, leading to conservation in the total energy. Calculations for a hydrogen combustion system from 1000 K up to 4000 K shows a variation of 0.012% when compared to the total energy of the system. VC 2016 Wiley Periodicals, Inc.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sapientia Repositóri...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility119
    visibilityviews119
    downloaddownloads59
    Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Emanuele Coccia;

    We report an extension of diffusion Monte Carlo (DMC) to the calculation of the molecular rotational energies by means of the generalized, symmetry-adapted, imaginary-time correlation functions (SAITCFs) originally introduced in the reptation quantum Monte Carlo (RQMC) framework (Skrbic in J Phys Chem A 111:12749, 2007). We studied the a-type and b-type rotational lines of the CO( $$^{4}$$ He) $$_{N}$$ clusters with $$N=$$ 1–8 that correlate, in the dimer limit, with the end-over-end and free-rotor transitions. We compare the SAITCF–DMC results with accurate DVR (for the dimer case), RQMC and other DMC data, and with reference experimental findings (Surin in Phys Rev Lett 101:233401, 2008). A good agreement is generally found, but a systematic underestimation of the SAITCF–DMC rotational energies of the b-type series is observed. Sources of inaccuracy in our theoretical approach and in the computational protocol are discussed and analyzed in detail.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Low Tempe...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • Aude Simon; Mathias Rapacioli; Eric Michoulier; Linjie Zheng; +2 Authors

    This review is dedicated to the application of the self-consistent-charge density-functional-based tight-binding (SCC-DFTB) approach to describe the structures, energetics, thermodynamic and spectr...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Jan Linderberg;

    Abstract Attempting to survey and review some developments in the design and use of atomic basis sets for molecular electronic structure calculations from the perspective of Per-Olov Lowdin's contributions this chapter is offered as a contribution to the celebration of the centennial of his birth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PURE Aarhus University
    Part of book or chapter of book . 2017
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aravinda Munasinghe; Akash Mathavan; Akshay Mathavan; Ping Lin; +1 Authors

    Therapeutic proteins have increasingly been used in modern medical applications, but their effectiveness is limited by factors such as stability and blood circulation time. Recently, there has been significant research into covalently linking polyethylene glycol polymer chains (PEG) to proteins, known as PEGylation, to mitigate these issues. In this work, an atomistic molecular dynamics study of N-terminal conjugated PEG-BSA (bovine serum albumin) was conducted with varying PEG molecular weights (2, 5, 10, and 20 kDa) to probe PEG-BSA interactions and evaluate the effect of polymer length on dynamics. It was found that the affinity of PEG toward the protein surface increased as a function of PEG molecular weight and that a certain weight (around 10 kDa) was required to promote protein?polymer interactions. Additionally, preferential interactions were monitored through formed contacts and hotspots were identified. PEG chains coordinating in looplike conformations were found near lysine residues. Also, it was found that hydrophobic interactions played an important role in promoting PEG-BSA interactions as the PEG molecular weight increased. The results provide insight into underlying mechanisms behind transitions in PEG conformations and will aid in future design of effective PEGylated drug molecules.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Physi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Michele Cutini; Marta Corno; Piero Ugliengo;

    We studied the sensitivity of the energetic and geometrical features of the proline ring (pyrrolidine) to the quantum mechanical computational approach by adopting the proline monomer, trimer, and polymer, as simplified collagen protein models. Within the Density Functional Theory (DFT) approach, we tested the ability of different functionals (GGA PBE and the hybrid B3LYP), added with a posteriori empirical dispersion corrections (D), to predict the conformational potential energy surface of the five-membered heterocycle pyrrolidine ring for the above models, dictating the collagen main features. We also compared the DFT-D results with those from the recently proposed cost-effective HF-3c method and our variant HF-3c-027, both based on Hartree-Fock Hamiltonian and Gaussian minimal basis set properly corrected for basis set superposition error, structure deficiencies, and dispersion interactions. We found that dispersion interactions are essential to destabilize specific conformers. While the HF-3c and its HF-3c-027 variant are unreliable to predict accurately the energy of the ring conformers, structures are accurate. Indeed, the cost-effective DFT-D//HF-3c-027 approach in which the energetic is from the accurate DFT-D method on HF-3c-027 structures provides energetic in line with that derived by the costly DFT-D//DFT-D approach, paving the way to simulate more realistic collagen models of much larger size. The adoption of either PBE or B3LYP functional for the electronic part of the DFT-D method gives very similar results, recommending the first as the most cost-effective method for simulating large collagen models. The predicted most stable conformation computed for the periodic poly proline (type II) model allows for a higher flexibility, in agreement with experimental studies on collagen protein. The present results open the way to large-scale calculations of the collagen/hydroxyapatite system, crucial for understanding the atomistic details in bones and teeth.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Abir Ganguly; Trung Quan Luong; Oliver Brylski; Michael Dirkmann; +6 Authors

    To improve our mechanistic understanding of zinc metalloenzymes, we report a joint computational and experimental study of a minimal carbonic anhydrase (CA) mimic, a 22-residue Zn-finger hydrolase. We combine classical molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) geometry optimizations, and QM/MM free energy simulations with ambient and high-pressure kinetic measurements to investigate the mechanism of the hydrolysis of the substrate p-nitrophenylacetate (pNPA). The zinc center of the hydrolase prefers a pentacoordinated geometry, as found in most naturally occurring CAs and CA-like enzymes. Two possible mechanisms for the catalytic reaction are investigated. The first one is analogous to the commonly accepted mechanism for CA-like enzymes: a sequential pathway, in which a Zn2+-bound hydroxide acts as a nucleophile and the hydrolysis proceeds through a tetrahedral intermediate. The initial rate-limiting step of this reaction is the nucleophilic attack of the hydroxide...

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universitätsbibliogr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
Send a message
How can we help?
We usually respond in a few hours.