search
1,210 Projects, page 1 of 121

  • UK Research and Innovation
  • UKRI|EPSRC
  • 2015

10
arrow_drop_down
  • Funder: UKRI Project Code: EP/M008460/1
    Funder Contribution: 294,406 GBP
    Partners: University of Edinburgh

    A ring is a mathematical structure that models many types of symmetry. Most rings encountered "in nature" are noncommutative: the order of operations matters. This project will investigate deep relationships between noncommutative ring theory and geometry. Rings are studied through their modules: objects that echo the symmetry encoded in the ring. The structure of a ring depends subtly and powerfully on the geometry of families of modules over that ring, and this connection has led to many advances. This project will explore this connection between the geometry of families of modules and the algebraic structure of rings in depth. I will extend current methods and develop new ones, and will apply my results to important unsolved algebraic problems. An example of the power of this connection between geometry and algebra is given by the famous Virasoro algebra. The Virasoro algebra is renowned in mathematics and physics. It may be viewed as a mathematical model of statistical mechanics, and so is of deep importance to physics, particularly conformal field theory. The Virasoro algebra is a Lie algebra, rather than a ring; it can be turned into a ring by forming its so-called universal enveloping algebra. Although the Virasoro algebra had been intensively studied for many years, important basic questions about its universal enveloping algebra remained unanswered. Specifically, for at least 25 years mathematicians had been asking if the enveloping algebra of the Virasoro algebra had the noetherian property. (Rings that are noetherian are relatively well-behaved; those that are not noetherian are more exotic.) In recent joint work with Walton, I applied geometry to solve this problem: the enveloping algebra of the Virasoro algebra is not noetherian. Our work shows the power of geometric techniques to address purely algebraic problems. One key method of our proof that the enveloping algebra of the Virasoro algebra is not noetherian was to construct a simpler model, called the canonical birational commutative factor. Because it is simpler, the model is easier to study; on the other hand, passing to the model loses a great deal of information. In this project, I will develop a general method, which will apply to many more rings than the enveloping algebra of the Virasoro algebra, to construct other canonical factors that contain more information but are still amendable to study. A general construction of more complex canonical factors will be a significant advance. Through the new techniques this project will develop, I will answer many important questions in ring theory. I will use geometry to get more information about the enveloping algebra of the Virasoro algebra. I will explore whether the noetherian property described above can be detected through geometry. I will apply geometric methods to a large class of rings, of which the enveloping algebra of the Virasoro is only one example: to universal enveloping algebras of graded infinite-dimensional Lie algebras. Through these methods, I will show these rings are not noetherian. These rings are famously intractable, and this problem is inaccessible without the new methods that I will bring to bear.

  • Funder: UKRI Project Code: EP/N509413/1
    Funder Contribution: 242,010 GBP
    Partners: University of York

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at www.rcuk.ac.uk/StudentshipTerminology. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

  • Funder: UKRI Project Code: EP/N509103/1
    Funder Contribution: 1,957,400 GBP
    Partners: University of Cambridge

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at www.rcuk.ac.uk/StudentshipTerminology. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

  • Funder: UKRI Project Code: EP/M02105X/1
    Funder Contribution: 348,059 GBP
    Partners: University of St Andrews

    Context: The invention of artificial lighting, dating from Joseph Wilson Swan and Thomas Edison's seminal contributions to the invention and commercialization of the incandescent light bulb in 1879, is arguably one of the most important inventions of humankind. Artificial lighting permits most human activities to continue past sundown, thus immeasurably increasing worldwide human productivity. Though Edison's device was much brighter than candle lighting, it was inefficient, converting only 0.2% of electricity into light. Since this seminal invention, many other lighting devices have been developed, from the tungsten lamp, to fluorescent tubes to halogen lighting to light-emitting diodes (LEDs) to organic light-emitting diodes (OLEDs). With each further iteration in lighting technology, the quality (pureness of colour), power efficiency and brightness of the light produced by the device have each improved. Light emission also enables information displays, televisions and computer screens. Producing devices that are energy efficient is of particular importance as, according to the US Department of Energy, it is estimated that 1/3 of commercial electricity use and 10% of household electricity consumption in the United States alone is dedicated towards artificial lighting. Artificial lighting represents a $15 Billion market in the United States alone and almost $91 Billion worldwide, corresponding to 20% of total worldwide energy output. The environmental impact related to this energy consumption is enormous and is estimated to be responsible for 7% of global CO2 emissions. Whereas inorganic LED and organic or polymer OLED lighting is now the state of the art in artificial lighting, their high cost and small active surface area are still barriers to wide adoption. In fact, for large surface area outdoor lighting applications, low-pressure sodium lamps are still the technology of first choice. Within this context, there is an urgent need to find alternative artificial lighting technologies that are of lower production cost, more energy efficient, colour tunable and can be used in environments not currently accessible to current LED and OLED technologies. It is implicit that in a similar manner to OLEDs, such a new lighting technology would have applications in visual displays, telecommunication and sensors. Organometallic complexes capable of harnessing light and/or electrical current and transforming such energy into useful work are at the heart of many important applications. An application that is of particular interest to my research group is energy-efficient visual displays and flat panel lighting based on either a phosphorescent light-emitting electrochemical cell (LEEC) architecture or an OLED architecture. Currently, most ionic transition metal complex-based (iTMC) LEECs rely on the use of a charged iridium(III) complex as the luminophoric material. These complexes can be readily solution processed. Iridium complexes phosphoresce and thus the maximum photoluminescence quantum efficiency (PLQY) theoretically attainable is unity. The external quantum efficiency (EQE) of a LEEC device has been found to scale proportionately to the solid-state PLQY and as such bright devices are possible. Despite the advantages listed above, LEECs incorporating iTMCs have several weaknesses: (i) low EQE; (ii) limited stability of the device and (iv) colour quality, particularly with reference to blue light emission. This grant proposal targets the development blue-emitting iridium(III) cationic complexes that will act as a luminophoric material in both LEEC and OLED devices. The two main goals are: 1. to obtain a LEEC that emits brightly in the blue region of the spectrum and that is stable over thousands of hours and that can quickly illuminate upon the application of an external voltage; to produce higher performance deep blue emitting OLEDs.

  • Funder: UKRI Project Code: EP/M508366/1
    Funder Contribution: 123,967 GBP
    Partners: University of Oxford

    Quantum key distribution (QKD) is a cryptographic scheme which provides an unprecedented level of data security. This can be used to prevent data breaches such as ATM 'Skimming' attacks. Our project seeks to develop practical application of QKD in securing short-range wireless communication between a terminal such as an ATM and a handheld device (e.g. mobile phone). Our consortium, Nokia R&D UK Ltd., Alpha Contract Engineering (ACE) and University of Oxford have identified the 3 main barriers to commercialisation, namely, the lack of low-cost optical wireless steering techniques, high cost barrier to complex optical assembly for quantum receivers and the lack of mass-manufacturable single photon detector (SPD) arrays on CMOS platform. A fast and precise optical steering device (University of Oxford) that directs single photons from a handheld device to a quantum receiver will be developed. Testing of individual system components will be carried out. In particular, miniaturised and simplified optical assemblies using existing UK manufacturing capability will be researched, built and tested for QKD use (ACE). Critical parameters of SPD arrays on scalable CMOS platform will be measured (University of Oxford) and used in detailed simulation and modelling to select the best suited steering method. Finally, a prototype wireless quantum link will be built (Nokia & University of Oxford) with simplified optics (ACE) to demonstrate the feasibility of secure quantum wireless transactions.

  • Funder: UKRI Project Code: EP/M014800/1
    Funder Contribution: 68,836 GBP
    Partners: Imperial College London

    This proposal focuses on the impact performance of state-of-the-art composites in the form of fibre-reinforced plastics (FRPs) with through-thickness reinforcement introduced via Z-pinning. The application of composites in primary lightweight structures has been steadily growing during the last 20 years, increasing the requirement for new and advanced composites technologies. Recent examples include large civil aircraft, such as the Boeing 787 and the Airbus A350, high performance cars, such as the McLaren 650S, and civil infrastructure, such as the Mount Pleasant bridge on the M6 motorway. FRPs are made of thin layers (plies) of plastic material with embedded high stiffness and strength fibres. The plies are bonded together in a stack by applying heat and pressure in a process known as "curing". The resulting assembly is the FRP laminate. The main reasons for the increasing usage of FRPs in several engineering fields are the superior in-plane specific stiffness and strength with respect to traditional alloys and the long-term environmental durability due to the absence of corrosion. Another key advantage of FRPs is that they can be tailored to specific design loads via optimising the orientation of the reinforcing fibres across the laminate stack. FRPs are, however, prone to delamination, i.e. the progressive dis-bond of the plies through the thickness of the laminate. This is due to the fact that standard FRP laminates have no reinforcement in the through-thickness direction, so the out-of-plane mechanical properties are significantly lower than the in-plane ones. According to the US Air Force, delamination can be held responsible for 60% of structural failures in FRP components in service. Impacts are the main cause of delamination in FRP laminates with energies usually in the order of 20J, sufficient to produce multiple delaminations in FRP plates. A representative scenario for such energy level is that of a 2cm diameter stone impacting a laminate at a speed of 110 km/h. In aerospace impact scenarios can be much more severe. For example, the certification of turbofan engines requires the fan blades to be able to withstand an impact with a bird whose mass is in the order of a few kilograms at speed in excess of 300 km/h, with impact energies of thousands of Joules. Introducing through-thickness reinforcement in FRPs is a viable strategy for improving the through-thickness mechanical properties and inhibiting delamination. Z-pinning is a through-thickness reinforcement technique whereby short FRP rods are inserted in the laminate before curing. Z-pinning has been proven to be particularly effective in inhibiting delamination under quasi-static, fatigue loading and low velocity/low energy impact loading. Nonetheless, little is known regarding the performance of Z-pinned laminates withstanding high energy/high speed impacts, whose effects are governed by complex transient phenomena taking place within the bulk FRP laminates and multiple ply interfaces. Overall, these phenomena are commonly denoted as "high strain rate" effects. There is some evidence that Z-pinning is beneficial also for high-speed impacts, but this is not conclusive. The current lack of knowledge may be circumvented with overdesign and expensive large-scale structural testing, but this is not a sustainable solution in a medium to long-term scenario. This project aims to fill the knowledge gap outlined above, by combining novel experimental characterisation at high deformation rates with new modelling techniques that can be used for the design and certification of impact damage tolerant composite structures. The development of suitable modelling techniques is particularly important for industrial exploitation, since it will reduce the amount of testing required for certification of composite structures, with a significant reduction of costs and shorter lead times to mark

  • Funder: UKRI Project Code: EP/M008258/1
    Funder Contribution: 604,938 GBP
    Partners: Oxford Nanopore Technologies (United Kingdom), University of Cambridge

    We propose to prepare and study a new class of synthetic ion channels based on dynamic metal-organic complexes that possess a pore-like central channel that will allow for substrate transport across a lipid bilayer. These complexes are obtained through the condensation of simple organic building blocks around octahedral metal ion templates. The modular nature of these complexes and the dynamic nature of their imine bonds will allow us to tune the assemblies to confer different physical properties upon them, while retaining their overall structures. Through tuning we will identify the key characteristics of complexes that can be inserted into lipid bilayers. This project builds upon preliminary investigations that have shown that heptyl-chain-bearing derivatives allowed chloride ions to pass across a membrane, providing a point of departure for our investigations. In other key precedent work we established that it is possible to induce reconstitution of the complexes into entirely different structures in the presence of different templating anions. We will investigate ways to exploit this phenomenon as an approach to controlling flux across a membrane by reversibly triggering reconstitution to form complexes that do not possess central channels, thus inhibiting ion transport. Development of these tuneable, gating ion channels will pave the way to new industrial processes that are driven by the effective separation of high value compounds from impure mixtures, and new chemical transformations involving the selective gating of intermediate species between vesicular reaction chambers. In future, our technologies may also facilitate new treatments for those who suffer from forms of channelopathy.

  • Project . 2015 - 2019
    Funder: UKRI Project Code: 1652620
    Partners: University of Bristol

    New methods of construction are needed to advance the capability of aircraft structures, meet business demands & reduce manufacturing costs. One is the use of bonded assemblies for primary structure. FAA currently requires that unless the strength of the structure can be proven to match or exceed the design requirements, it must have mechanical fasteners to prevent critical failure. Bonded structures allow a significant reduction in weight due to using thinner skins. If 'Chicken rivets' are mandated, then this negates any benefit in terms of weight saving. The only current reliable way of testing the bonded assembly strength is proof loading - expensive & unrealistic for testing every part. An NDE method of testing a bonded assembly is needed to allow the use of lightweight bonded primary aerostructures. This must allow assessment that the desired strength is achieved, or identify areas of a weak-bonded area to allow repair. The project will investigate the application of phased array inspection approaches to determine bond strength, firstly studying current best practise with linear phased arrays and moving on to compare this to the recently developed nonlinear phased array approach.

  • Funder: UKRI Project Code: EP/M024512/1
    Funder Contribution: 244,299 GBP
    Partners: KCL

    While the theory of minimal and constant mean curvature (CMC) surfaces is a purely mathematical one, such surfaces overtly present themselves in nature and are studied in many material sciences. This makes the theory more exciting. If we take a closed wire and dip it in and out of soapy water, the soap film that forms across the loop is in fact a minimal surface and the physical properties of soap films were already studied by Plateau in the 1850s. The air pressure on the sides of soap films is equal and constant. However, if we change the pressure on one side, for instance by blowing air on it, the new surface that we obtain is what we call a soap bubble. A soap bubble is a CMC surface. More precisely, minimal and CMC surfaces are, respectively, mathematical idealisation of soap films and soap bubbles. The mean curvature of a soap film and bubble is a quantity that is proportional to the pressure difference on the sides of the film. The value of the pressure difference, and therefore of the mean curvature, is zero for a soap film/minimal surface and it is non-zero constant for a soap bubble/CMC surface. Since the pressure inside a small bubble is greater than the pressure inside a big one, the constant mean curvature of a small bubble is greater than the constant mean curvature of a big one. Minimal and CMC surfaces also enjoy crucial minimising properties relative to area. Among all surfaces spanning a given boundary, a soap film/minimal surface is one with locally least area; soap bubbles/CMC surfaces locally minimise area under a volume constraint. This project aims to investigate several key geometric properties of minimal and CMC surfaces. Roughly speaking, I intend to prove several results about CMC surfaces embedded in a flat three-dimensional manifold, including area estimates when the surfaces are compact with bounded genus and the ambient manifold is compact. I also plan to study the limits of a sequence of minimal or CMC surfaces embedded in a general three-dimensional manifold.

  • Project . 2015 - 2019
    Funder: UKRI Project Code: EP/M508184/1
    Funder Contribution: 2,821,030 GBP
    Partners: University of Warwick

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at www.rcuk.ac.uk/StudentshipTerminology. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

search
1,210 Projects, page 1 of 121
  • Funder: UKRI Project Code: EP/M008460/1
    Funder Contribution: 294,406 GBP
    Partners: University of Edinburgh

    A ring is a mathematical structure that models many types of symmetry. Most rings encountered "in nature" are noncommutative: the order of operations matters. This project will investigate deep relationships between noncommutative ring theory and geometry. Rings are studied through their modules: objects that echo the symmetry encoded in the ring. The structure of a ring depends subtly and powerfully on the geometry of families of modules over that ring, and this connection has led to many advances. This project will explore this connection between the geometry of families of modules and the algebraic structure of rings in depth. I will extend current methods and develop new ones, and will apply my results to important unsolved algebraic problems. An example of the power of this connection between geometry and algebra is given by the famous Virasoro algebra. The Virasoro algebra is renowned in mathematics and physics. It may be viewed as a mathematical model of statistical mechanics, and so is of deep importance to physics, particularly conformal field theory. The Virasoro algebra is a Lie algebra, rather than a ring; it can be turned into a ring by forming its so-called universal enveloping algebra. Although the Virasoro algebra had been intensively studied for many years, important basic questions about its universal enveloping algebra remained unanswered. Specifically, for at least 25 years mathematicians had been asking if the enveloping algebra of the Virasoro algebra had the noetherian property. (Rings that are noetherian are relatively well-behaved; those that are not noetherian are more exotic.) In recent joint work with Walton, I applied geometry to solve this problem: the enveloping algebra of the Virasoro algebra is not noetherian. Our work shows the power of geometric techniques to address purely algebraic problems. One key method of our proof that the enveloping algebra of the Virasoro algebra is not noetherian was to construct a simpler model, called the canonical birational commutative factor. Because it is simpler, the model is easier to study; on the other hand, passing to the model loses a great deal of information. In this project, I will develop a general method, which will apply to many more rings than the enveloping algebra of the Virasoro algebra, to construct other canonical factors that contain more information but are still amendable to study. A general construction of more complex canonical factors will be a significant advance. Through the new techniques this project will develop, I will answer many important questions in ring theory. I will use geometry to get more information about the enveloping algebra of the Virasoro algebra. I will explore whether the noetherian property described above can be detected through geometry. I will apply geometric methods to a large class of rings, of which the enveloping algebra of the Virasoro is only one example: to universal enveloping algebras of graded infinite-dimensional Lie algebras. Through these methods, I will show these rings are not noetherian. These rings are famously intractable, and this problem is inaccessible without the new methods that I will bring to bear.

  • Funder: UKRI Project Code: EP/N509413/1
    Funder Contribution: 242,010 GBP
    Partners: University of York

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at www.rcuk.ac.uk/StudentshipTerminology. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

  • Funder: UKRI Project Code: EP/N509103/1
    Funder Contribution: 1,957,400 GBP
    Partners: University of Cambridge

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at www.rcuk.ac.uk/StudentshipTerminology. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

  • Funder: UKRI Project Code: EP/M02105X/1
    Funder Contribution: 348,059 GBP
    Partners: University of St Andrews

    Context: The invention of artificial lighting, dating from Joseph Wilson Swan and Thomas Edison's seminal contributions to the invention and commercialization of the incandescent light bulb in 1879, is arguably one of the most important inventions of humankind. Artificial lighting permits most human activities to continue past sundown, thus immeasurably increasing worldwide human productivity. Though Edison's device was much brighter than candle lighting, it was inefficient, converting only 0.2% of electricity into light. Since this seminal invention, many other lighting devices have been developed, from the tungsten lamp, to fluorescent tubes to halogen lighting to light-emitting diodes (LEDs) to organic light-emitting diodes (OLEDs). With each further iteration in lighting technology, the quality (pureness of colour), power efficiency and brightness of the light produced by the device have each improved. Light emission also enables information displays, televisions and computer screens. Producing devices that are energy efficient is of particular importance as, according to the US Department of Energy, it is estimated that 1/3 of commercial electricity use and 10% of household electricity consumption in the United States alone is dedicated towards artificial lighting. Artificial lighting represents a $15 Billion market in the United States alone and almost $91 Billion worldwide, corresponding to 20% of total worldwide energy output. The environmental impact related to this energy consumption is enormous and is estimated to be responsible for 7% of global CO2 emissions. Whereas inorganic LED and organic or polymer OLED lighting is now the state of the art in artificial lighting, their high cost and small active surface area are still barriers to wide adoption. In fact, for large surface area outdoor lighting applications, low-pressure sodium lamps are still the technology of first choice. Within this context, there is an urgent need to find alternative artificial lighting technologies that are of lower production cost, more energy efficient, colour tunable and can be used in environments not currently accessible to current LED and OLED technologies. It is implicit that in a similar manner to OLEDs, such a new lighting technology would have applications in visual displays, telecommunication and sensors. Organometallic complexes capable of harnessing light and/or electrical current and transforming such energy into useful work are at the heart of many important applications. An application that is of particular interest to my research group is energy-efficient visual displays and flat panel lighting based on either a phosphorescent light-emitting electrochemical cell (LEEC) architecture or an OLED architecture. Currently, most ionic transition metal complex-based (iTMC) LEECs rely on the use of a charged iridium(III) complex as the luminophoric material. These complexes can be readily solution processed. Iridium complexes phosphoresce and thus the maximum photoluminescence quantum efficiency (PLQY) theoretically attainable is unity. The external quantum efficiency (EQE) of a LEEC device has been found to scale proportionately to the solid-state PLQY and as such bright devices are possible. Despite the advantages listed above, LEECs incorporating iTMCs have several weaknesses: (i) low EQE; (ii) limited stability of the device and (iv) colour quality, particularly with reference to blue light emission. This grant proposal targets the development blue-emitting iridium(III) cationic complexes that will act as a luminophoric material in both LEEC and OLED devices. The two main goals are: 1. to obtain a LEEC that emits brightly in the blue region of the spectrum and that is stable over thousands of hours and that can quickly illuminate upon the application of an external voltage; to produce higher performance deep blue emitting OLEDs.

  • Funder: UKRI Project Code: EP/M508366/1
    Funder Contribution: 123,967 GBP
    Partners: University of Oxford

    Quantum key distribution (QKD) is a cryptographic scheme which provides an unprecedented level of data security. This can be used to prevent data breaches such as ATM 'Skimming' attacks. Our project seeks to develop practical application of QKD in securing short-range wireless communication between a terminal such as an ATM and a handheld device (e.g. mobile phone). Our consortium, Nokia R&D UK Ltd., Alpha Contract Engineering (ACE) and University of Oxford have identified the 3 main barriers to commercialisation, namely, the lack of low-cost optical wireless steering techniques, high cost barrier to complex optical assembly for quantum receivers and the lack of mass-manufacturable single photon detector (SPD) arrays on CMOS platform. A fast and precise optical steering device (University of Oxford) that directs single photons from a handheld device to a quantum receiver will be developed. Testing of individual system components will be carried out. In particular, miniaturised and simplified optical assemblies using existing UK manufacturing capability will be researched, built and tested for QKD use (ACE). Critical parameters of SPD arrays on scalable CMOS platform will be measured (University of Oxford) and used in detailed simulation and modelling to select the best suited steering method. Finally, a prototype wireless quantum link will be built (Nokia & University of Oxford) with simplified optics (ACE) to demonstrate the feasibility of secure quantum wireless transactions.

  • Funder: UKRI Project Code: EP/M014800/1
    Funder Contribution: 68,836 GBP
    Partners: Imperial College London

    This proposal focuses on the impact performance of state-of-the-art composites in the form of fibre-reinforced plastics (FRPs) with through-thickness reinforcement introduced via Z-pinning. The application of composites in primary lightweight structures has been steadily growing during the last 20 years, increasing the requirement for new and advanced composites technologies. Recent examples include large civil aircraft, such as the Boeing 787 and the Airbus A350, high performance cars, such as the McLaren 650S, and civil infrastructure, such as the Mount Pleasant bridge on the M6 motorway. FRPs are made of thin layers (plies) of plastic material with embedded high stiffness and strength fibres. The plies are bonded together in a stack by applying heat and pressure in a process known as "curing". The resulting assembly is the FRP laminate. The main reasons for the increasing usage of FRPs in several engineering fields are the superior in-plane specific stiffness and strength with respect to traditional alloys and the long-term environmental durability due to the absence of corrosion. Another key advantage of FRPs is that they can be tailored to specific design loads via optimising the orientation of the reinforcing fibres across the laminate stack. FRPs are, however, prone to delamination, i.e. the progressive dis-bond of the plies through the thickness of the laminate. This is due to the fact that standard FRP laminates have no reinforcement in the through-thickness direction, so the out-of-plane mechanical properties are significantly lower than the in-plane ones. According to the US Air Force, delamination can be held responsible for 60% of structural failures in FRP components in service. Impacts are the main cause of delamination in FRP laminates with energies usually in the order of 20J, sufficient to produce multiple delaminations in FRP plates. A representative scenario for such energy level is that of a 2cm diameter stone impacting a laminate at a speed of 110 km/h. In aerospace impact scenarios can be much more severe. For example, the certification of turbofan engines requires the fan blades to be able to withstand an impact with a bird whose mass is in the order of a few kilograms at speed in excess of 300 km/h, with impact energies of thousands of Joules. Introducing through-thickness reinforcement in FRPs is a viable strategy for improving the through-thickness mechanical properties and inhibiting delamination. Z-pinning is a through-thickness reinforcement technique whereby short FRP rods are inserted in the laminate before curing. Z-pinning has been proven to be particularly effective in inhibiting delamination under quasi-static, fatigue loading and low velocity/low energy impact loading. Nonetheless, little is known regarding the performance of Z-pinned laminates withstanding high energy/high speed impacts, whose effects are governed by complex transient phenomena taking place within the bulk FRP laminates and multiple ply interfaces. Overall, these phenomena are commonly denoted as "high strain rate" effects. There is some evidence that Z-pinning is beneficial also for high-speed impacts, but this is not conclusive. The current lack of knowledge may be circumvented with overdesign and expensive large-scale structural testing, but this is not a sustainable solution in a medium to long-term scenario. This project aims to fill the knowledge gap outlined above, by combining novel experimental characterisation at high deformation rates with new modelling techniques that can be used for the design and certification of impact damage tolerant composite structures. The development of suitable modelling techniques is particularly important for industrial exploitation, since it will reduce the amount of testing required for certification of composite structures, with a significant reduction of costs and shorter lead times to mark

  • Funder: UKRI Project Code: EP/M008258/1
    Funder Contribution: 604,938 GBP
    Partners: Oxford Nanopore Technologies (United Kingdom), University of Cambridge

    We propose to prepare and study a new class of synthetic ion channels based on dynamic metal-organic complexes that possess a pore-like central channel that will allow for substrate transport across a lipid bilayer. These complexes are obtained through the condensation of simple organic building blocks around octahedral metal ion templates. The modular nature of these complexes and the dynamic nature of their imine bonds will allow us to tune the assemblies to confer different physical properties upon them, while retaining their overall structures. Through tuning we will identify the key characteristics of complexes that can be inserted into lipid bilayers. This project builds upon preliminary investigations that have shown that heptyl-chain-bearing derivatives allowed chloride ions to pass across a membrane, providing a point of departure for our investigations. In other key precedent work we established that it is possible to induce reconstitution of the complexes into entirely different structures in the presence of different templating anions. We will investigate ways to exploit this phenomenon as an approach to controlling flux across a membrane by reversibly triggering reconstitution to form complexes that do not possess central channels, thus inhibiting ion transport. Development of these tuneable, gating ion channels will pave the way to new industrial processes that are driven by the effective separation of high value compounds from impure mixtures, and new chemical transformations involving the selective gating of intermediate species between vesicular reaction chambers. In future, our technologies may also facilitate new treatments for those who suffer from forms of channelopathy.

  • Project . 2015 - 2019
    Funder: UKRI Project Code: 1652620
    Partners: University of Bristol

    New methods of construction are needed to advance the capability of aircraft structures, meet business demands & reduce manufacturing costs. One is the use of bonded assemblies for primary structure. FAA currently requires that unless the strength of the structure can be proven to match or exceed the design requirements, it must have mechanical fasteners to prevent critical failure. Bonded structures allow a significant reduction in weight due to using thinner skins. If 'Chicken rivets' are mandated, then this negates any benefit in terms of weight saving. The only current reliable way of testing the bonded assembly strength is proof loading - expensive & unrealistic for testing every part. An NDE method of testing a bonded assembly is needed to allow the use of lightweight bonded primary aerostructures. This must allow assessment that the desired strength is achieved, or identify areas of a weak-bonded area to allow repair. The project will investigate the application of phased array inspection approaches to determine bond strength, firstly studying current best practise with linear phased arrays and moving on to compare this to the recently developed nonlinear phased array approach.

  • Funder: UKRI Project Code: EP/M024512/1
    Funder Contribution: 244,299 GBP
    Partners: KCL

    While the theory of minimal and constant mean curvature (CMC) surfaces is a purely mathematical one, such surfaces overtly present themselves in nature and are studied in many material sciences. This makes the theory more exciting. If we take a closed wire and dip it in and out of soapy water, the soap film that forms across the loop is in fact a minimal surface and the physical properties of soap films were already studied by Plateau in the 1850s. The air pressure on the sides of soap films is equal and constant. However, if we change the pressure on one side, for instance by blowing air on it, the new surface that we obtain is what we call a soap bubble. A soap bubble is a CMC surface. More precisely, minimal and CMC surfaces are, respectively, mathematical idealisation of soap films and soap bubbles. The mean curvature of a soap film and bubble is a quantity that is proportional to the pressure difference on the sides of the film. The value of the pressure difference, and therefore of the mean curvature, is zero for a soap film/minimal surface and it is non-zero constant for a soap bubble/CMC surface. Since the pressure inside a small bubble is greater than the pressure inside a big one, the constant mean curvature of a small bubble is greater than the constant mean curvature of a big one. Minimal and CMC surfaces also enjoy crucial minimising properties relative to area. Among all surfaces spanning a given boundary, a soap film/minimal surface is one with locally least area; soap bubbles/CMC surfaces locally minimise area under a volume constraint. This project aims to investigate several key geometric properties of minimal and CMC surfaces. Roughly speaking, I intend to prove several results about CMC surfaces embedded in a flat three-dimensional manifold, including area estimates when the surfaces are compact with bounded genus and the ambient manifold is compact. I also plan to study the limits of a sequence of minimal or CMC surfaces embedded in a general three-dimensional manifold.

  • Project . 2015 - 2019
    Funder: UKRI Project Code: EP/M508184/1
    Funder Contribution: 2,821,030 GBP
    Partners: University of Warwick

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at www.rcuk.ac.uk/StudentshipTerminology. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

Send a message
How can we help?
We usually respond in a few hours.