Filters
Clear AllLoading
assignment_turned_in Project2014 - 2020 University of Huddersfield, Loughborough University, Bruker UK LtdFunder: UKRI Project Code: EP/L01498X/1Funder Contribution: 1,224,540 GBPTo support the development of challenging, difficult to manufacture products, increased reliance is placed on techniques to allow accurate dimensional measurement of parts and components. New measurement systems are needed that provide data quickly with higher levels of accuracy and precision than is currently possible. Currently high accuracy measurements are made using dedicated expensive instrumentation in temperature controlled labs. The wide range of measurement challenges mean there is no single instrument available to suit all needs. In fact, the range of lab based instrument systems required to meet the measurement needs of industry continues to grow. It includes techniques ranging from contact measurements made using a mechanical probe, to non-contact measurements which use light, lasers, or X-ray based measurement methods. The main drawback of these systems is that they are usually slow to set-up, and significant time is required to take measurements. This means that although they are very accurate they are less useful for the control and improvement of challenging manufacturing processes, where data must be collected and analysed quickly. Improved measurement systems are required which provide higher speed measurements, at lower cost, without compromising accuracy. Currently two approaches address this need. One approach uses on machine sensors to provide high-speed measurements, while the other approach is to position instruments closer to the manufacturing environment to reduce the time required to transfer work to the measurement lab. Both approaches have obvious benefits as they provide faster data; however, they are also less accurate as a result of the unwanted disturbances experienced on the factory floor. These limitations result in a trade-off: the user can either have high accuracy, or high speed measurement, but not both at once. The research undertaken within this Fellowship will develop a new way of collecting and effectively processing critical measurement data. Instead of a reliance on high accuracy instruments, this approach will provide a new way of thinking with respect to how measurement systems are designed and implemented. The goal will be to allow different types of lower accuracy data to be combined in a beneficial way. For example, computer simulations of a machine, product, and process will be combined with sensors that monitor environmental conditions. In addition sensors used to take high speed measurements of parts during the manufacturing process itself will be used. Through a collaborative process these data will be combined to provide fast high quality data. To verify and further improve the system a small quantity of accurate feedback data from high accuracy instruments in temperature controlled labs will be used. In effect the approach will be to combine slow accurate data, with fast less reliable data, to produce enhanced accuracy fast measurements. For example, if a batch of high precision components must be produced, the components must also have their geometry verified and corrected if required. On machine sensors may be used to verify geometry, but accuracy is limited due to environmental effects such as temperature and humidity. To compensate for these errors a collaborative measurement system will initially make measurements using both on-machine sensors as well as off-machine lab instruments. It will blend these data sets in addition to data from on-machine environmental monitoring sensors, and computer simulations to correct for errors and therefor enhance the accuracy of the measurements. The system will automatically adapt to changing environmental conditions by triggering the need for more lab-based data which will allow an improved error correction to be made. In this way the system will adapt and optimise the measurement process to suit the current manufacturing conditions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::69f7386d11d4685c58cfed29aec35318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 1visibility views 1 download downloads 0 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::69f7386d11d4685c58cfed29aec35318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2024 GlaxoSmithKline, Cardiff University, RENISHAWFunder: UKRI Project Code: EP/M00855X/1Funder Contribution: 3,747,410 GBPMRI scanners are used widely to diagnose disease and to understand the workings of the healthy body. However, while useful for some diagnoses, they do not capture tissue properties at microscopic length scales (thousandths of a millimetre) where important processes occur, e.g. in the 'axons' connecting different brain areas, or in cells in vital organs, e.g. liver. Such detailed examination usually requires an invasive 'biopsy' which is studied under a microscope. However, biopsies only provide information about small regions of an organ, are destructive and so cannot be performed repeatedly for monitoring, and can be risky to collect, e.g. in the brain. This project assembles engineers, physicists, mathematicians and computer scientists to develop new MRI methods for quantifying tissue structure at the microscopic scale. The principal approach looks at how fine tissue structure impedes the movement of water. Current MRI hardware restricts measurement to relatively large molecular displacements and from tissue components with a relatively strong and long-lived signal. This blurs our picture and prohibits us from quantifying important characteristics, such as individual cell dimensions, or packing of nerve fibres. The sensitivity of MRI to smaller molecular movements and weaker signals is mainly limited by the available magnetic field gradients (controlled alterations in the field strength within the scanner). We have persuaded MRI manufacturers to build a bespoke MRI system with ultra-strong gradients (7 times stronger than available on standard MRI scanners) to be situated in the new Cardiff University Brain Research Imaging Centre. One similar system currently exists (in Boston, USA) but is used predominantly to make qualitative pictures of the brain's wiring pattern. Our team has the unique combination of expertise to develop and exploit this hardware in completely new directions. By designing new physics methods to 'tune' the scanner to important (otherwise invisible) signals, developing new biophysical models to explain these signals, and suppressing unwanted signals, we will be able to quantify important tissue properties for the first time. Making such a system usable poses several key engineering challenges, such as modelling of electromagnetic fields, to deal with confounds that become significant with stronger gradients, and modelling of the effects on nerves/cardiac tissue, to impose safety constraints. However, the current work of the consortium of applicants provides strong starting points for overcoming these challenges. Established methods for accelerating MR data acquisition will be compromised with stronger gradients, requiring development of new physics methods for fast data collection. Once achieved, faster acquisition and access to newly-visible signal components will enable us to develop new mathematical models of microstructure incorporating finer length-scales to increase understanding of tissue structure in health and disease, and to make testable predictions on important biophysical parameters such as nerve conduction velocities in the brain. This will result in earlier and more accurate diagnoses, more specific and better-targeted therapy, improved treatment monitoring, and overall improved patient outcome. The ultimate goal is to develop the imaging software that brings this hardware to mass availability, in turn enabling a new generation of mainstream microstructure imaging and macrostructural connectivity mapping techniques to translate to frontline practice.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7c1b6435a550abf22955df941089a3a8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 4visibility views 4 download downloads 46 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7c1b6435a550abf22955df941089a3a8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2020 Imperial College LondonFunder: UKRI Project Code: EP/L020564/1Funder Contribution: 1,616,110 GBPThe occurrence of interfaces, i.e. material or geometric frontiers between regimes with different physical properties not a priori prescribed, arises in an enormous number of inherently nonlinear problems from fluid-solid mechanics and financial mathematics to materials science and glaciology. The study of interfaces encounters, in addition to the presence of a free boundary, several other challenging aspects and complexities, including a physically proper description of the dynamics of three-phase contact lines, fluid motion over substrates with complex geometry, concentration-dependent physical properties, the presence of nanoparticles and phase transitions. We refer to these as complex interfacial phenomena (CIPh). The proposed research is a synergistic approach combining state-of-the-art modelling, simulations and experimentation to scrutinise a number of open problems and research directions in the area of CIPh. The aim is to rationally understand and systematically predict their physical behaviour and properties. This in turn will allow for step improvements to the performance and efficiency of a host of technologies and applications that rely crucially on CIPh. The theoretical-computational work will be complemented by detailed small-scale experiments that will act so as to verify the efficacy of the developed models, as well as aiding the development of a toolkit for practical applications. The work will be undertaken by a team from the Chemical Engineering and Mathematics Departments at Imperial College London with complementary skills and strengths.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::16ca058de5a4a958fc16f11f3bebc229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 699visibility views 699 download downloads 3,249 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::16ca058de5a4a958fc16f11f3bebc229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2023 Imperial College London, NTT Basic Research Laboratories, Diamond Light SourceFunder: UKRI Project Code: EP/L016524/1Funder Contribution: 4,208,660 GBPRecently, an influential American business magazine, Forbes, chose Quantum Engineering as one of its top 10 majors (degree programmes) for 2022. According to Forbes magazine (September 2012): "a need is going to arise for specialists capable of taking advantage of quantum mechanical effects in electronics and other products." We propose to renew the CDT in Controlled Quantum Dynamics (CQD) to continue its success in training students to develop quantum technologies in a collaborative manner between experiment and theory and across disciplines. With the ever growing demand for compactness, controllability and accuracy, the size of opto-electronic devices in particular, and electronic devices in general, is approaching the realm where only fully quantum mechanical theory can explain the fluctuations in (and limitations of) these devices. Pushing the frontiers of the 'very small' and 'very fast' looks set to bring about a revolution in our understanding of many fundamental processes in e.g. physics, chemistry and even biology with widespread applications. Although the fundamental basis of quantum theory remains intact, more recent theoretical and experimental developments have led researchers to use the laws of quantum mechanics in new and exciting ways - allowing the manipulation of matter on the atomic scale for hitherto undreamt of applications. This field not only holds the promise of addressing the issue of quantum fluctuations but of turning the quantum behaviour of nano- structures to our advantage. Indeed, the continued development of high-technology is crucial and we are convinced that our proposed CDT can play an important role. When a new field emerges a key challenge in meeting the current and future demands of industry is appropriate training, which is what we propose to achieve in this CDT. The UK plays a leading role in the theory and experimental development of CQD and Imperial College is a centre of excellence within this context. The team involved in the proposed CDT covers a wide range of key activities from theory to experiment. Collectively we have an outstanding track record in research, training of postgraduate students and teaching. The aim of the proposed CDT is to provide a coherent training environment bringing together PhD students from a wide variety of backgrounds and giving them an appreciation of experiment and theory of related fields under the umbrella of CQD. Students graduating from our programme will subsequently find themselves in high-demand both by industry and academia. The proposed CDT addresses the EPSRC strategic area 'Quantum Information Processing and Quantum Optics" and one of the priority areas of the CDT call, "Towards Quantum Technologies". The excellence of our doctoral training has been recognised by the award of a highly competitive EU Innovative Doctoral Programme (IDP) in Frontiers of Quantum Technology, which will start in October 2013 running for four years with the budget around 3.8 million euros. The new CDT will closely work with the IDP to maximise synergy. It is clear that other high-profile activities within the general area of CQD are being undertaken in a range of other UK universities and within Imperial College. A key aim of our DTC is inclusivity. We operate a model whereby academics from outside of Imperial College can act as co-supervisors for PhD students on collaborative projects whereby the student spends part of the PhD at the partner institution whilst remaining closely tied to Imperial College and the student cohort. Many of the CDT activities including lectures and summer schools will be open to other PhD students within the UK. Outreach and transferable skills courses will be emphasised to provide a set of outreach classes and to organise various outreach activities including the CDT in CQD Quantum Show to the general public and CDT Festivals and to participate in Imperial's Science Festivals.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b34744510ab18bca2920f72391498f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 389visibility views 389 download downloads 437 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b34744510ab18bca2920f72391498f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2019 University of EdinburghFunder: UKRI Project Code: EP/M010554/1Funder Contribution: 595,323 GBPUranium, the heaviest naturally occurring element, is the main component of nuclear waste. In air, and in the environment, it forms dioxide salts called uranyl compounds, which are all based around a doubly charged, linear O=U=O group. These compounds are very soluble and are problematic environmental groundwater contaminants. The U=O bonds are also extraordinarily chemically robust and show little propensity to participate in the myriad of reactions that are characteristic of transition metal dioxide analogues which have chemical and catalytic uses in both biological and industrial environments. Due to relativistic effects, thorium, another component of nuclear waste, and a potential nuclear fuel of interest due to the lower proliferation risk, also does not have straightforward, predictable chemistry, and is a remarkably soft +4 metal ion. The behaviour of its molecular oxides is poorly understood, although tantalising glimpses of what might be possible come from gas phase studies that suggest oxo structures completely unlike the other actinyl ions. Uranium's man-made and highly radioactive neighbour neptunium forms linear O=Np=O dications like uranium, but due to the extra f-electron, shows much more oxygen atom reactivity. In nuclear waste, cation-cation complexes form with U, Np, and Pu when the oxo groups bind to another metal dioxo cation, making the behaviour of the mixtures harder to predict. However, by adding an electron to the uranyl ion, we and others have shown in recent years that the singly reduced uranyl can provide a more oxo-reactive, better model for the heavier actinyls. Since the route for precipitating uranium from groundwater involves an initial one-electron reduction to an aqueous-unstable intermediate, these stable U(V) uranyl complexes are potentially important models for understanding how uranium is precipitated. Our work to uncover actinyl ion reactivity similar to that seen in transition metal oxo chemistry has focused on using a rigid organic ligand framework to expose one of the oxygen atoms. We have most recently reported a smaller, more constrained macrocycle that can bind one or two uranium or thorium cations, so far in the lower oxidation states. This also allowed us to look at covalency in the metal-ligand and metal-metal interactions. We will use the control afforded by these two rigid ligands to make a series of actinide oxo complexes with new geometries. Some, including more chemically esoteric projects, are initially anticipated to be purely of academic interest, and an important part of researcher training. Some of the reactions will have more relevance to environmental and waste-related molecular processes, including proton, electron, and oxo group rearrangement, transfer, and abstraction. Results concerning the reactivity of these new complexes will help us better understand the more complex metal oxo systems found in nuclear wastes and the environment. We will look at hydrocarbon C-H bond cleavage by the most reactive actinide oxo complexes, working on pure hydrocarbon substrates, but recognising the relevance to the destruction of organic pollutants induced by photolysis of uranyl. Working at the EU Joint research centre for transuranic research at the ITU (Karlsruhe), we will also study the neptunium analogues of these complexes. The molecularity of these systems will also make the magnetism of mono- and bimetallic complexes easier to understand and model than solid-state compounds. The experts at the ITU will be able to identify whether the two metals communicate through a central oxo atom or even through ligand pi-systems. We will also provide samples to collaborators at the INE (institute of nuclear waste disposal), Karlsruhe and Los Alamos National Labs, USA, to obtain XAS data that allow the study of the valence orbitals, metal-metal distances/interactions (from the EXAFS) and covalency (from the ligand edge XAS).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::36ec99aeaf1eec843b44686d5bfc86ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 50visibility views 50 download downloads 177 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::36ec99aeaf1eec843b44686d5bfc86ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2024 SMRE, SEU, CMCL Innovations (United Kingdom)Funder: UKRI Project Code: EP/L016362/1Funder Contribution: 3,527,890 GBPThe motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c359369541f0d78b0ce2be44982412b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 62visibility views 62 download downloads 412 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c359369541f0d78b0ce2be44982412b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2019 University of LeedsFunder: UKRI Project Code: EP/M507453/1Funder Contribution: 628,303 GBPDoctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::251bf10a3caf2c9d5f3e4aa9cc7a6270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::251bf10a3caf2c9d5f3e4aa9cc7a6270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2019 Photek Ltd, Scientific Analysis Instruments Ltd, University of BristolFunder: UKRI Project Code: EP/L005913/1Funder Contribution: 4,663,080 GBPIon imaging, first demonstrated just 25 years ago, is already having a major impact on the way we explore molecular change (the very essence of chemistry) in many gas phase systems. The technique has features in common with mass spectrometry (MS). Both start by removing an electron from the target species, generating ions, i.e. charged molecules or fragments, which are then 'sorted' by their mass. In traditional MS, the species of interest is characterised by its spectrum of ion yield versus mass. Electron removal in most ion imaging experiments is induced by a short pulse of laser light; the resulting ions are then accelerated towards a time and position sensitive detector. Heavier ions travel more slowly, so one can image ions of just one particular mass by ensuring that the detector is only 'on' at the appropriate time. The spatial pattern of ion impacts that builds up on the detector when the experiment is repeated many times is visually intuitive, and provides quantitative energetic information about the reaction(s) that yields the monitored product. However, the read out time of current ion imaging detectors is too slow to allow imaging of ions with different mass formed in the same laser shot, and many species are not readily amenable to ionisation in current ion imaging schemes. Imaging all products from a given reaction is therefore time consuming (at best) and, at worst, impossible. We seek to solve both these limitations. Two of the team have already demonstrated new, much faster, time and position sensitive sensors capable of imaging multiple masses in a single shot experiment. This multimass imaging capability will be developed further and rolled-out for use and refinement across the team. We also propose new multiphoton ionization schemes as well as 'universal' ion formation methods based on use of shorter laser wavelengths or short duration pulses of energy selected electrons. The following over-arching scientific ambitions will proceed in parallel, and exploit the foregoing advances in ion imaging technology at the earliest possible opportunity: (i) We will use the latest ion imaging methods to explore molecular change in the gas phase, focusing on key families of (photo)chemical reactions: addition, dissociation, cyclisation and ring opening reactions of organic molecules, and metal-ligand and metal-cluster interactions. These choices reflect the importance of such reactions in synthesis, catalysis, etc., their amenability to complementary high level theory, and our ability to explore the same reactions in solution (using a new ultrafast pump-probe laser spectroscopy facility). Determining the extent to which the mechanisms and energetics of reactions established through exquisitely detailed gas phase studies can inform our understanding of reactivity in the condensed phase is a current 'hot' issue in chemical science, which the team is ideally placed to address. (ii) We will develop and exploit new multi-dimensional analytical methods with combined mass, structural and spatial resolution. Mass spectra usually show many peaks attributable to fragment ions, but the paths by which these are formed are often unclear. Imaging MS is proposed as a novel means of unravelling different routes to forming a given fragment ion; distinguishing and characterising such pathways can offer new insights into, for example, peptide structure. Yet more ambitious, we propose to combine multimass and spatial map imaging with existing laser desorption/ionisation methods to enable spatially resolved compositional analysis of surfaces and of samples on surfaces. Such a capability will offer new opportunities in diverse activities like tissue imaging (e.g. detection of metal ions within tissue specimens of relevance to understanding the failure of some metal-on-metal hip implants), forensic analysis (e.g. 'chemical' imaging of fingerprints, inks, dyes, pollens, etc) and parallel mass spectrometric sampling (e.g. of blood samples).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::89ccfafb4abd4f92d8929bb767475871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 69visibility views 69 download downloads 575 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::89ccfafb4abd4f92d8929bb767475871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2018 Kyoto University, NICPB-Tallinn, University of SouthamptonFunder: UKRI Project Code: EP/M001962/1Funder Contribution: 826,421 GBPFullerenes are football-shaped cages of carbon atoms, for the discovery of which the British scientist Harry Kroto won the Nobel prize in 1996. Inside the cage is an empty space. Chemists and physicists have found many ingenious ways of trapping atoms or molecules inside the tiny fullerene cages. These encapsulated compounds are called endofullerenes. A remarkable method was pioneered by the Japanese scientists Komatsu and Murata, one of whom is a project partner on the current proposal. They performed "molecular surgery". First, a series of chemical reactions was used to open a hole in the fullerene cages. A small molecule such as water (H2O) was then inserted into each fullerene cage by using high temperature and pressure. Finally, a further series of chemical reactions was used to "sew" the holes back up again. The result was the remarkable chemical compound called water-endofullerene, denoted H2O@C60. Our team has succeeded in developing a new synthetic route which requires milder conditions and has improved yield for the production of H2O@C60. In addition we will encapsulate other small molecules in the fullerene cage, including ammonia (NH3) and methane (CH4). Molecules of ordinary water have two forms, which are called ortho and para-water, which are distinguished by the way the magnetic hydrogen nuclei point: in opposite sense for para-water, and in the same sense for ortho-water. In ordinary conditions, these two forms interconvert rapidly, and cannot be isolated. However, by trapping water molecules inside fullerene cages, the two forms are isolated and may be studied separately. We recently observed that these two forms of water have different electrical properties. At low temperatures, the two forms interconvert over a period of tens of hours. We will study the interconversion of the two forms of water, and develop a theory of why this conversion changes the electrical properties. In order to understand how these molecules behave, we will use several techniques. These methods include nuclear magnetic resonance (which involves a strong magnet and radiowaves), neutron scattering (in which the material is bombarded with neutrons from a nuclear reactor) and infrared spectroscopy (which involves the absorption of low-energy light waves). By combining the information from these different techniques, we will build up a complete picture of the quantum-mechanical behaviour of the trapped molecules. Since ortho and para-water have different electrical properties, we expect to distinguish between single H2O@C60 molecules in the ortho and para states, by measuring the electrical response of single molecules. This will be done scanning over a surface loaded with the fullerenes, using a very sharp tip. In this way, we hope to observe the ortho to para transition of single molecules - something that has never been done before. Although most of this project concerns basic science, this project could lead to technological and even medical advances in the future. For example, the ortho and para states of the individual H2O@C60 molecules could allow the storage of one bit of information inside a single molecule, without damaging it in any way. This might lead to a new form of very dense data storage. Since a single gram of H2O@C60 contains about 10^19 molecules, this single gram could in principle store 1 million terabytes of information, sufficient to store the DNA sequences of everyone on the planet (although it will be very difficult to store and retrieve this information). In addition, the quantum behaviour of the encapsulated molecules is expected to give rise to greatly enhanced magnetic resonance signals, leading to the possibility of greatly enhanced MRI images, with considerable medical benefits.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::de2a99bd56d4dffb9e6b7d1689782168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 58visibility views 58 download downloads 130 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::de2a99bd56d4dffb9e6b7d1689782168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2019 BTL, Pharmidex Pharmaceutical Services Limited, University of LondonFunder: UKRI Project Code: EP/L020904/1Funder Contribution: 845,501 GBPOrgan failure and tissue loss are challenging health issues due to widespread aging population, injury, the lack of organs for transplantation and limitations of conventional artificial implants. There is a fast growing need in surgery to replace and repair soft tissues such as blood vessels, stent, trachea, skin, or even entire organs, such as bladder, kidney, heart, facial organs etc. The high demand for new artificial implants for long-term repair and substantially improved clinical outcome still remains .Our well-publicised successes in using tissue-engineering to replace hollow organs in cases of compassionate need have shown the world that an engineering approach to hollow organ replacement is feasible, as well as serving to highlight those areas where more work is required to provide bespoke manufactured tissue scaffolds for routine clinical use Being able to replicate a functional part of one's body as an exact match and therefore to be able to replace it 'as good as before' is familiar in science fiction. Most implants will share limitations that are associated with either the materials used or the traditional way in which they have been made. With the advancement of additive manufacturing technology, 3D printing, biomaterials and cell production, printing an artificial organs is becoming a science and engineering fact and understandably can save lives and enhance quality of life through surgical transplantation of such printed organs produced on-demand, specifically for the individual of interest. The project seeks to addresses the unmet need in traditional implants by exploiting our proprietary polymer nanocomposites developed at UCL and advanced digital additive manufacturing with surgical practice. we aim to develop a 3D advanced digital bio-printing system for polymer nanocomposites in order to manufacture a new-generation of synthetic soft organs 'on-demand' and bespoke to the patient's particular needs. Our extensive preclinical and on-going preclinical study on the nanocomposite-based organs will ensure the construct is able to induce angiogenesis and to perform function of an epithelium. Here we take these experiences in the compassionate case, and take trachea as an exemplar to develop a manufacturing method of producing bespoke tubular organs for transplantation with nanocomposite material. This proposal will allow us to develop; a) a customer made 3D bioprinter with multi-printing heads and an environmental chamber which can print 'live' soft organs/scaffolds with seeded cells to meet the individual patients needs; b) a series of polymer nanocomposites suitable for 3D printingorgan constructs/host scaffolds; c) a formulations of bio-inks for printing cells, proteins and biomolecules. d) a printed artificial tracheal constructs using their radiographic images with optimised biochemical, biophysical and mechanical properties. e) Establishment of in-vivo feasibility data through observation of restoration of respiratory function and normal tissue integration of pig models which will be surgically transplanted
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::80e7a6c6b696af410fbdf842e193943a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 9visibility views 9 download downloads 73 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::80e7a6c6b696af410fbdf842e193943a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
assignment_turned_in Project2014 - 2020 University of Huddersfield, Loughborough University, Bruker UK LtdFunder: UKRI Project Code: EP/L01498X/1Funder Contribution: 1,224,540 GBPTo support the development of challenging, difficult to manufacture products, increased reliance is placed on techniques to allow accurate dimensional measurement of parts and components. New measurement systems are needed that provide data quickly with higher levels of accuracy and precision than is currently possible. Currently high accuracy measurements are made using dedicated expensive instrumentation in temperature controlled labs. The wide range of measurement challenges mean there is no single instrument available to suit all needs. In fact, the range of lab based instrument systems required to meet the measurement needs of industry continues to grow. It includes techniques ranging from contact measurements made using a mechanical probe, to non-contact measurements which use light, lasers, or X-ray based measurement methods. The main drawback of these systems is that they are usually slow to set-up, and significant time is required to take measurements. This means that although they are very accurate they are less useful for the control and improvement of challenging manufacturing processes, where data must be collected and analysed quickly. Improved measurement systems are required which provide higher speed measurements, at lower cost, without compromising accuracy. Currently two approaches address this need. One approach uses on machine sensors to provide high-speed measurements, while the other approach is to position instruments closer to the manufacturing environment to reduce the time required to transfer work to the measurement lab. Both approaches have obvious benefits as they provide faster data; however, they are also less accurate as a result of the unwanted disturbances experienced on the factory floor. These limitations result in a trade-off: the user can either have high accuracy, or high speed measurement, but not both at once. The research undertaken within this Fellowship will develop a new way of collecting and effectively processing critical measurement data. Instead of a reliance on high accuracy instruments, this approach will provide a new way of thinking with respect to how measurement systems are designed and implemented. The goal will be to allow different types of lower accuracy data to be combined in a beneficial way. For example, computer simulations of a machine, product, and process will be combined with sensors that monitor environmental conditions. In addition sensors used to take high speed measurements of parts during the manufacturing process itself will be used. Through a collaborative process these data will be combined to provide fast high quality data. To verify and further improve the system a small quantity of accurate feedback data from high accuracy instruments in temperature controlled labs will be used. In effect the approach will be to combine slow accurate data, with fast less reliable data, to produce enhanced accuracy fast measurements. For example, if a batch of high precision components must be produced, the components must also have their geometry verified and corrected if required. On machine sensors may be used to verify geometry, but accuracy is limited due to environmental effects such as temperature and humidity. To compensate for these errors a collaborative measurement system will initially make measurements using both on-machine sensors as well as off-machine lab instruments. It will blend these data sets in addition to data from on-machine environmental monitoring sensors, and computer simulations to correct for errors and therefor enhance the accuracy of the measurements. The system will automatically adapt to changing environmental conditions by triggering the need for more lab-based data which will allow an improved error correction to be made. In this way the system will adapt and optimise the measurement process to suit the current manufacturing conditions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::69f7386d11d4685c58cfed29aec35318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 1visibility views 1 download downloads 0 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::69f7386d11d4685c58cfed29aec35318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2024 GlaxoSmithKline, Cardiff University, RENISHAWFunder: UKRI Project Code: EP/M00855X/1Funder Contribution: 3,747,410 GBPMRI scanners are used widely to diagnose disease and to understand the workings of the healthy body. However, while useful for some diagnoses, they do not capture tissue properties at microscopic length scales (thousandths of a millimetre) where important processes occur, e.g. in the 'axons' connecting different brain areas, or in cells in vital organs, e.g. liver. Such detailed examination usually requires an invasive 'biopsy' which is studied under a microscope. However, biopsies only provide information about small regions of an organ, are destructive and so cannot be performed repeatedly for monitoring, and can be risky to collect, e.g. in the brain. This project assembles engineers, physicists, mathematicians and computer scientists to develop new MRI methods for quantifying tissue structure at the microscopic scale. The principal approach looks at how fine tissue structure impedes the movement of water. Current MRI hardware restricts measurement to relatively large molecular displacements and from tissue components with a relatively strong and long-lived signal. This blurs our picture and prohibits us from quantifying important characteristics, such as individual cell dimensions, or packing of nerve fibres. The sensitivity of MRI to smaller molecular movements and weaker signals is mainly limited by the available magnetic field gradients (controlled alterations in the field strength within the scanner). We have persuaded MRI manufacturers to build a bespoke MRI system with ultra-strong gradients (7 times stronger than available on standard MRI scanners) to be situated in the new Cardiff University Brain Research Imaging Centre. One similar system currently exists (in Boston, USA) but is used predominantly to make qualitative pictures of the brain's wiring pattern. Our team has the unique combination of expertise to develop and exploit this hardware in completely new directions. By designing new physics methods to 'tune' the scanner to important (otherwise invisible) signals, developing new biophysical models to explain these signals, and suppressing unwanted signals, we will be able to quantify important tissue properties for the first time. Making such a system usable poses several key engineering challenges, such as modelling of electromagnetic fields, to deal with confounds that become significant with stronger gradients, and modelling of the effects on nerves/cardiac tissue, to impose safety constraints. However, the current work of the consortium of applicants provides strong starting points for overcoming these challenges. Established methods for accelerating MR data acquisition will be compromised with stronger gradients, requiring development of new physics methods for fast data collection. Once achieved, faster acquisition and access to newly-visible signal components will enable us to develop new mathematical models of microstructure incorporating finer length-scales to increase understanding of tissue structure in health and disease, and to make testable predictions on important biophysical parameters such as nerve conduction velocities in the brain. This will result in earlier and more accurate diagnoses, more specific and better-targeted therapy, improved treatment monitoring, and overall improved patient outcome. The ultimate goal is to develop the imaging software that brings this hardware to mass availability, in turn enabling a new generation of mainstream microstructure imaging and macrostructural connectivity mapping techniques to translate to frontline practice.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7c1b6435a550abf22955df941089a3a8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 4visibility views 4 download downloads 46 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7c1b6435a550abf22955df941089a3a8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2020 Imperial College LondonFunder: UKRI Project Code: EP/L020564/1Funder Contribution: 1,616,110 GBPThe occurrence of interfaces, i.e. material or geometric frontiers between regimes with different physical properties not a priori prescribed, arises in an enormous number of inherently nonlinear problems from fluid-solid mechanics and financial mathematics to materials science and glaciology. The study of interfaces encounters, in addition to the presence of a free boundary, several other challenging aspects and complexities, including a physically proper description of the dynamics of three-phase contact lines, fluid motion over substrates with complex geometry, concentration-dependent physical properties, the presence of nanoparticles and phase transitions. We refer to these as complex interfacial phenomena (CIPh). The proposed research is a synergistic approach combining state-of-the-art modelling, simulations and experimentation to scrutinise a number of open problems and research directions in the area of CIPh. The aim is to rationally understand and systematically predict their physical behaviour and properties. This in turn will allow for step improvements to the performance and efficiency of a host of technologies and applications that rely crucially on CIPh. The theoretical-computational work will be complemented by detailed small-scale experiments that will act so as to verify the efficacy of the developed models, as well as aiding the development of a toolkit for practical applications. The work will be undertaken by a team from the Chemical Engineering and Mathematics Departments at Imperial College London with complementary skills and strengths.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::16ca058de5a4a958fc16f11f3bebc229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 699visibility views 699 download downloads 3,249 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::16ca058de5a4a958fc16f11f3bebc229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2023 Imperial College London, NTT Basic Research Laboratories, Diamond Light SourceFunder: UKRI Project Code: EP/L016524/1Funder Contribution: 4,208,660 GBPRecently, an influential American business magazine, Forbes, chose Quantum Engineering as one of its top 10 majors (degree programmes) for 2022. According to Forbes magazine (September 2012): "a need is going to arise for specialists capable of taking advantage of quantum mechanical effects in electronics and other products." We propose to renew the CDT in Controlled Quantum Dynamics (CQD) to continue its success in training students to develop quantum technologies in a collaborative manner between experiment and theory and across disciplines. With the ever growing demand for compactness, controllability and accuracy, the size of opto-electronic devices in particular, and electronic devices in general, is approaching the realm where only fully quantum mechanical theory can explain the fluctuations in (and limitations of) these devices. Pushing the frontiers of the 'very small' and 'very fast' looks set to bring about a revolution in our understanding of many fundamental processes in e.g. physics, chemistry and even biology with widespread applications. Although the fundamental basis of quantum theory remains intact, more recent theoretical and experimental developments have led researchers to use the laws of quantum mechanics in new and exciting ways - allowing the manipulation of matter on the atomic scale for hitherto undreamt of applications. This field not only holds the promise of addressing the issue of quantum fluctuations but of turning the quantum behaviour of nano- structures to our advantage. Indeed, the continued development of high-technology is crucial and we are convinced that our proposed CDT can play an important role. When a new field emerges a key challenge in meeting the current and future demands of industry is appropriate training, which is what we propose to achieve in this CDT. The UK plays a leading role in the theory and experimental development of CQD and Imperial College is a centre of excellence within this context. The team involved in the proposed CDT covers a wide range of key activities from theory to experiment. Collectively we have an outstanding track record in research, training of postgraduate students and teaching. The aim of the proposed CDT is to provide a coherent training environment bringing together PhD students from a wide variety of backgrounds and giving them an appreciation of experiment and theory of related fields under the umbrella of CQD. Students graduating from our programme will subsequently find themselves in high-demand both by industry and academia. The proposed CDT addresses the EPSRC strategic area 'Quantum Information Processing and Quantum Optics" and one of the priority areas of the CDT call, "Towards Quantum Technologies". The excellence of our doctoral training has been recognised by the award of a highly competitive EU Innovative Doctoral Programme (IDP) in Frontiers of Quantum Technology, which will start in October 2013 running for four years with the budget around 3.8 million euros. The new CDT will closely work with the IDP to maximise synergy. It is clear that other high-profile activities within the general area of CQD are being undertaken in a range of other UK universities and within Imperial College. A key aim of our DTC is inclusivity. We operate a model whereby academics from outside of Imperial College can act as co-supervisors for PhD students on collaborative projects whereby the student spends part of the PhD at the partner institution whilst remaining closely tied to Imperial College and the student cohort. Many of the CDT activities including lectures and summer schools will be open to other PhD students within the UK. Outreach and transferable skills courses will be emphasised to provide a set of outreach classes and to organise various outreach activities including the CDT in CQD Quantum Show to the general public and CDT Festivals and to participate in Imperial's Science Festivals.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b34744510ab18bca2920f72391498f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 389visibility views 389 download downloads 437 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b34744510ab18bca2920f72391498f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2019 University of EdinburghFunder: UKRI Project Code: EP/M010554/1Funder Contribution: 595,323 GBPUranium, the heaviest naturally occurring element, is the main component of nuclear waste. In air, and in the environment, it forms dioxide salts called uranyl compounds, which are all based around a doubly charged, linear O=U=O group. These compounds are very soluble and are problematic environmental groundwater contaminants. The U=O bonds are also extraordinarily chemically robust and show little propensity to participate in the myriad of reactions that are characteristic of transition metal dioxide analogues which have chemical and catalytic uses in both biological and industrial environments. Due to relativistic effects, thorium, another component of nuclear waste, and a potential nuclear fuel of interest due to the lower proliferation risk, also does not have straightforward, predictable chemistry, and is a remarkably soft +4 metal ion. The behaviour of its molecular oxides is poorly understood, although tantalising glimpses of what might be possible come from gas phase studies that suggest oxo structures completely unlike the other actinyl ions. Uranium's man-made and highly radioactive neighbour neptunium forms linear O=Np=O dications like uranium, but due to the extra f-electron, shows much more oxygen atom reactivity. In nuclear waste, cation-cation complexes form with U, Np, and Pu when the oxo groups bind to another metal dioxo cation, making the behaviour of the mixtures harder to predict. However, by adding an electron to the uranyl ion, we and others have shown in recent years that the singly reduced uranyl can provide a more oxo-reactive, better model for the heavier actinyls. Since the route for precipitating uranium from groundwater involves an initial one-electron reduction to an aqueous-unstable intermediate, these stable U(V) uranyl complexes are potentially important models for understanding how uranium is precipitated. Our work to uncover actinyl ion reactivity similar to that seen in transition metal oxo chemistry has focused on using a rigid organic ligand framework to expose one of the oxygen atoms. We have most recently reported a smaller, more constrained macrocycle that can bind one or two uranium or thorium cations, so far in the lower oxidation states. This also allowed us to look at covalency in the metal-ligand and metal-metal interactions. We will use the control afforded by these two rigid ligands to make a series of actinide oxo complexes with new geometries. Some, including more chemically esoteric projects, are initially anticipated to be purely of academic interest, and an important part of researcher training. Some of the reactions will have more relevance to environmental and waste-related molecular processes, including proton, electron, and oxo group rearrangement, transfer, and abstraction. Results concerning the reactivity of these new complexes will help us better understand the more complex metal oxo systems found in nuclear wastes and the environment. We will look at hydrocarbon C-H bond cleavage by the most reactive actinide oxo complexes, working on pure hydrocarbon substrates, but recognising the relevance to the destruction of organic pollutants induced by photolysis of uranyl. Working at the EU Joint research centre for transuranic research at the ITU (Karlsruhe), we will also study the neptunium analogues of these complexes. The molecularity of these systems will also make the magnetism of mono- and bimetallic complexes easier to understand and model than solid-state compounds. The experts at the ITU will be able to identify whether the two metals communicate through a central oxo atom or even through ligand pi-systems. We will also provide samples to collaborators at the INE (institute of nuclear waste disposal), Karlsruhe and Los Alamos National Labs, USA, to obtain XAS data that allow the study of the valence orbitals, metal-metal distances/interactions (from the EXAFS) and covalency (from the ligand edge XAS).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::36ec99aeaf1eec843b44686d5bfc86ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 50visibility views 50 download downloads 177 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::36ec99aeaf1eec843b44686d5bfc86ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2024 SMRE, SEU, CMCL Innovations (United Kingdom)Funder: UKRI Project Code: EP/L016362/1Funder Contribution: 3,527,890 GBPThe motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c359369541f0d78b0ce2be44982412b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 62visibility views 62 download downloads 412 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c359369541f0d78b0ce2be44982412b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2019 University of LeedsFunder: UKRI Project Code: EP/M507453/1Funder Contribution: 628,303 GBPDoctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::251bf10a3caf2c9d5f3e4aa9cc7a6270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::251bf10a3caf2c9d5f3e4aa9cc7a6270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2019 Photek Ltd, Scientific Analysis Instruments Ltd, University of BristolFunder: UKRI Project Code: EP/L005913/1Funder Contribution: 4,663,080 GBPIon imaging, first demonstrated just 25 years ago, is already having a major impact on the way we explore molecular change (the very essence of chemistry) in many gas phase systems. The technique has features in common with mass spectrometry (MS). Both start by removing an electron from the target species, generating ions, i.e. charged molecules or fragments, which are then 'sorted' by their mass. In traditional MS, the species of interest is characterised by its spectrum of ion yield versus mass. Electron removal in most ion imaging experiments is induced by a short pulse of laser light; the resulting ions are then accelerated towards a time and position sensitive detector. Heavier ions travel more slowly, so one can image ions of just one particular mass by ensuring that the detector is only 'on' at the appropriate time. The spatial pattern of ion impacts that builds up on the detector when the experiment is repeated many times is visually intuitive, and provides quantitative energetic information about the reaction(s) that yields the monitored product. However, the read out time of current ion imaging detectors is too slow to allow imaging of ions with different mass formed in the same laser shot, and many species are not readily amenable to ionisation in current ion imaging schemes. Imaging all products from a given reaction is therefore time consuming (at best) and, at worst, impossible. We seek to solve both these limitations. Two of the team have already demonstrated new, much faster, time and position sensitive sensors capable of imaging multiple masses in a single shot experiment. This multimass imaging capability will be developed further and rolled-out for use and refinement across the team. We also propose new multiphoton ionization schemes as well as 'universal' ion formation methods based on use of shorter laser wavelengths or short duration pulses of energy selected electrons. The following over-arching scientific ambitions will proceed in parallel, and exploit the foregoing advances in ion imaging technology at the earliest possible opportunity: (i) We will use the latest ion imaging methods to explore molecular change in the gas phase, focusing on key families of (photo)chemical reactions: addition, dissociation, cyclisation and ring opening reactions of organic molecules, and metal-ligand and metal-cluster interactions. These choices reflect the importance of such reactions in synthesis, catalysis, etc., their amenability to complementary high level theory, and our ability to explore the same reactions in solution (using a new ultrafast pump-probe laser spectroscopy facility). Determining the extent to which the mechanisms and energetics of reactions established through exquisitely detailed gas phase studies can inform our understanding of reactivity in the condensed phase is a current 'hot' issue in chemical science, which the team is ideally placed to address. (ii) We will develop and exploit new multi-dimensional analytical methods with combined mass, structural and spatial resolution. Mass spectra usually show many peaks attributable to fragment ions, but the paths by which these are formed are often unclear. Imaging MS is proposed as a novel means of unravelling different routes to forming a given fragment ion; distinguishing and characterising such pathways can offer new insights into, for example, peptide structure. Yet more ambitious, we propose to combine multimass and spatial map imaging with existing laser desorption/ionisation methods to enable spatially resolved compositional analysis of surfaces and of samples on surfaces. Such a capability will offer new opportunities in diverse activities like tissue imaging (e.g. detection of metal ions within tissue specimens of relevance to understanding the failure of some metal-on-metal hip implants), forensic analysis (e.g. 'chemical' imaging of fingerprints, inks, dyes, pollens, etc) and parallel mass spectrometric sampling (e.g. of blood samples).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::89ccfafb4abd4f92d8929bb767475871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 69visibility views 69 download downloads 575 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::89ccfafb4abd4f92d8929bb767475871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2018 Kyoto University, NICPB-Tallinn, University of SouthamptonFunder: UKRI Project Code: EP/M001962/1Funder Contribution: 826,421 GBPFullerenes are football-shaped cages of carbon atoms, for the discovery of which the British scientist Harry Kroto won the Nobel prize in 1996. Inside the cage is an empty space. Chemists and physicists have found many ingenious ways of trapping atoms or molecules inside the tiny fullerene cages. These encapsulated compounds are called endofullerenes. A remarkable method was pioneered by the Japanese scientists Komatsu and Murata, one of whom is a project partner on the current proposal. They performed "molecular surgery". First, a series of chemical reactions was used to open a hole in the fullerene cages. A small molecule such as water (H2O) was then inserted into each fullerene cage by using high temperature and pressure. Finally, a further series of chemical reactions was used to "sew" the holes back up again. The result was the remarkable chemical compound called water-endofullerene, denoted H2O@C60. Our team has succeeded in developing a new synthetic route which requires milder conditions and has improved yield for the production of H2O@C60. In addition we will encapsulate other small molecules in the fullerene cage, including ammonia (NH3) and methane (CH4). Molecules of ordinary water have two forms, which are called ortho and para-water, which are distinguished by the way the magnetic hydrogen nuclei point: in opposite sense for para-water, and in the same sense for ortho-water. In ordinary conditions, these two forms interconvert rapidly, and cannot be isolated. However, by trapping water molecules inside fullerene cages, the two forms are isolated and may be studied separately. We recently observed that these two forms of water have different electrical properties. At low temperatures, the two forms interconvert over a period of tens of hours. We will study the interconversion of the two forms of water, and develop a theory of why this conversion changes the electrical properties. In order to understand how these molecules behave, we will use several techniques. These methods include nuclear magnetic resonance (which involves a strong magnet and radiowaves), neutron scattering (in which the material is bombarded with neutrons from a nuclear reactor) and infrared spectroscopy (which involves the absorption of low-energy light waves). By combining the information from these different techniques, we will build up a complete picture of the quantum-mechanical behaviour of the trapped molecules. Since ortho and para-water have different electrical properties, we expect to distinguish between single H2O@C60 molecules in the ortho and para states, by measuring the electrical response of single molecules. This will be done scanning over a surface loaded with the fullerenes, using a very sharp tip. In this way, we hope to observe the ortho to para transition of single molecules - something that has never been done before. Although most of this project concerns basic science, this project could lead to technological and even medical advances in the future. For example, the ortho and para states of the individual H2O@C60 molecules could allow the storage of one bit of information inside a single molecule, without damaging it in any way. This might lead to a new form of very dense data storage. Since a single gram of H2O@C60 contains about 10^19 molecules, this single gram could in principle store 1 million terabytes of information, sufficient to store the DNA sequences of everyone on the planet (although it will be very difficult to store and retrieve this information). In addition, the quantum behaviour of the encapsulated molecules is expected to give rise to greatly enhanced magnetic resonance signals, leading to the possibility of greatly enhanced MRI images, with considerable medical benefits.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::de2a99bd56d4dffb9e6b7d1689782168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 58visibility views 58 download downloads 130 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::de2a99bd56d4dffb9e6b7d1689782168&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2019 BTL, Pharmidex Pharmaceutical Services Limited, University of LondonFunder: UKRI Project Code: EP/L020904/1Funder Contribution: 845,501 GBPOrgan failure and tissue loss are challenging health issues due to widespread aging population, injury, the lack of organs for transplantation and limitations of conventional artificial implants. There is a fast growing need in surgery to replace and repair soft tissues such as blood vessels, stent, trachea, skin, or even entire organs, such as bladder, kidney, heart, facial organs etc. The high demand for new artificial implants for long-term repair and substantially improved clinical outcome still remains .Our well-publicised successes in using tissue-engineering to replace hollow organs in cases of compassionate need have shown the world that an engineering approach to hollow organ replacement is feasible, as well as serving to highlight those areas where more work is required to provide bespoke manufactured tissue scaffolds for routine clinical use Being able to replicate a functional part of one's body as an exact match and therefore to be able to replace it 'as good as before' is familiar in science fiction. Most implants will share limitations that are associated with either the materials used or the traditional way in which they have been made. With the advancement of additive manufacturing technology, 3D printing, biomaterials and cell production, printing an artificial organs is becoming a science and engineering fact and understandably can save lives and enhance quality of life through surgical transplantation of such printed organs produced on-demand, specifically for the individual of interest. The project seeks to addresses the unmet need in traditional implants by exploiting our proprietary polymer nanocomposites developed at UCL and advanced digital additive manufacturing with surgical practice. we aim to develop a 3D advanced digital bio-printing system for polymer nanocomposites in order to manufacture a new-generation of synthetic soft organs 'on-demand' and bespoke to the patient's particular needs. Our extensive preclinical and on-going preclinical study on the nanocomposite-based organs will ensure the construct is able to induce angiogenesis and to perform function of an epithelium. Here we take these experiences in the compassionate case, and take trachea as an exemplar to develop a manufacturing method of producing bespoke tubular organs for transplantation with nanocomposite material. This proposal will allow us to develop; a) a customer made 3D bioprinter with multi-printing heads and an environmental chamber which can print 'live' soft organs/scaffolds with seeded cells to meet the individual patients needs; b) a series of polymer nanocomposites suitable for 3D printingorgan constructs/host scaffolds; c) a formulations of bio-inks for printing cells, proteins and biomolecules. d) a printed artificial tracheal constructs using their radiographic images with optimised biochemical, biophysical and mechanical properties. e) Establishment of in-vivo feasibility data through observation of restoration of respiratory function and normal tissue integration of pig models which will be surgically transplanted
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::80e7a6c6b696af410fbdf842e193943a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 9visibility views 9 download downloads 73 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::80e7a6c6b696af410fbdf842e193943a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu