
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
TrueFace is a first dataset of social media processed real and synthetic faces, obtained by the successful StyleGAN generative models, and shared on Facebook, Twitter and Telegram. Images have historically been a universal and cross-cultural communication medium, capable of reaching people of any social background, status or education. Unsurprisingly though, their social impact has often been exploited for malicious purposes, like spreading misinformation and manipulating public opinion. With today's technologies, the possibility to generate highly realistic fakes is within everyone's reach. A major threat derives in particular from the use of synthetically generated faces, which are able to deceive even the most experienced observer. To contrast this fake news phenomenon, researchers have employed artificial intelligence to detect synthetic images by analysing patterns and artifacts introduced by the generative models. However, most online images are subject to repeated sharing operations by social media platforms. Said platforms process uploaded images by applying operations (like compression) that progressively degrade those useful forensic traces, compromising the effectiveness of the developed detectors. To solve the synthetic-vs-real problem "in the wild", more realistic image databases, like TrueFace, are needed to train specialised detectors.
Synthetic faces, Social media, Real vs Fake, Image forensics, StyleGAN, Fake detection, GAN, Generative Adversarial Network
Twitter Data
Synthetic faces, Social media, Real vs Fake, Image forensics, StyleGAN, Fake detection, GAN, Generative Adversarial Network
Twitter Data
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 274 | |
downloads | 51 |