Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite; ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

User Groups for Robustness of Meta Matrix Factorization Against Decreasing Privacy Budgets

Authors: Müllner, Peter; Kowald, Dominik; Lex, Elisabeth;

User Groups for Robustness of Meta Matrix Factorization Against Decreasing Privacy Budgets

Abstract

This dataset comprises a subset of rating data from five different datasets, i.e., Douban [1], Hetrec-MovieLens [2], MovieLens 1M [3], Ciao [4] and Jester [5]. Each subset represents rating data from three distinct user groups: users with few ratings (low), users with a medium amount of ratings (med) and users with lots of ratings (high). Each row in the user files includes a user's id and her number of ratings. The rows of the ratings files are in the format (user_id, item_id, rating). For more details, we refer to our publication in https://rd.springer.com/chapter/10.1007/978-3-030-72240-1_8. Douban * 375 users (i.e., 125 users per user group) * 32,191 items * 266,517 ratings Hetrec-MovieLens * 318 users (i.e., 106 users per user group) * 9,553 items * 207,943 ratings MovieLens 1M * 906 users (i.e., 302 users per user group) * 3,613 items * 275,119 ratings Ciao * 1,107 users (i.e., 369 users per user group) * 60,132 items * 107,807 ratings Jester * 11,013 users (i.e., 3,671 per user group) * 100 items * 618768 ratings The python code for generating and utilizing this dataset can be found in https://github.com/pmuellner/RobustnessOfMetaMF. This work is supported by the H2020 project TRUSTS (GA: 871481) and the "DDAI'' COMET Module within the COMET – Competence Centers for Excellent Technologies Programme, funded by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit), the Austrian Federal Ministry for Digital and Economic Affairs (bmdw), the Austrian Research Promotion Agency (FFG), the province of Styria (SFG) and partners from industry and academia. The COMET Programme is managed by FFG. [1] Hu, L., Sun, A., Liu, Y.: Your neighbors affect your ratings: on geographical neighborhood influence to rating prediction. In: SIGIR’14 (2014) [2] Cantador, I., Brusilovsky, P., Kuflik, T.: Second international workshop on information heterogeneity and fusion in recommender systems (hetrec2011). In: RecSys’11(2011) [3] Harper, F. M., Konstan, J. A.: The movielens datasets: History and context. ACM Transactions on Interactive Intelligent Systems (TIIS) 5(4), 1–19 (2015) [4] Guo, G., Zhang, J., Thalmann, D., Yorke-Smith, N.: Etaf: An extended trust antecedents framework for trust prediction. In: ASONAM’14 (2014) [5] Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval 4(2), 133–151 (2001)

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 369
    download downloads 21
  • 369
    views
    21
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
369
21