Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrochemical low-frequency impedance spectroscopy algorith for diagnostics of PEM fuel cell degradation

Authors: Ivar J. Halvorsen; Ivan Pivac; Dario Bezmalinovic; Frano Barbir; Federico Zenith;

Electrochemical low-frequency impedance spectroscopy algorith for diagnostics of PEM fuel cell degradation

Abstract

In order to estimate fuel-cell degradation status on-line and inexpensively, a diagnostic technique based on relay feedback is developed. The technique can obtain critical parameters within seconds of start-up and is robust to measurement bias. Electrochemical impedance spectroscopy (EIS) is a popular laboratory technique to perform diagnostics on electrochemical systems such as fuel cells, but its application to real-life fuel-cell systems is difficult because of the size and cost of the apparatus. In this study, we present a more detailed equivalent-circuit model for a PEM fuel cell, able to explain the positive reactance shown at low frequencies. Some of these characteristics, measured at several stages during an Accelerated Stress Test (AST), progress gradually with catalyst degradation, providing an effective prognostic variable. In order to measure these characteristics, a relay-based feedback excitation algorithm is developed to estimate the low-frequency intercept in the Nyquist plane of the cell impedance without resorting to a full-fledged EIS. The simulations indicate that the algorithm converges to an estimate within about 5 seconds, and is robust to bias. The algorithm can be run within the standard control system that fuel cells are usually equipped with, with no additional hardware.

Data published under ODbL.

Related Organizations
Keywords

fuel cell diagnostics, impedance spectroscopy

Powered by OpenAIRE graph
Found an issue? Give us feedback
Funded by