Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: ZENODO
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dataset - Global site-specific health impacts of fossil energy, steel mills, oil refineries and cement plants

Authors: Oberschelp, Christopher;

Dataset - Global site-specific health impacts of fossil energy, steel mills, oil refineries and cement plants

Abstract

Climate change and particulate matter air pollution present major threats to human well-being by causing impacts on human health. Both are connected to key air pollutants such as carbon dioxide (CO2), primary fine particulate matter (PM2.5), sulfur dioxide (SO2), nitrogen oxides (NOx) and ammonia (NH3), which are primarily emitted from energy-intensive industrial sectors. We present the first study to consistently link a broad range of emission measurements for these substances with site-specific technical data, emission models, and atmospheric fate and effect models to quantify health impacts caused by nearly all global fossil power plants, steel mills, oil refineries and cement plants. The resulting health impact patterns differ substantially from far less detailed earlier studies due to the high resolution of included data, highlighting in particular the key role of emission abatement at individual coal-consuming industrial sites in densely populated areas of Asia (Northern and North-Eastern India, Java in Indonesia, Eastern China), Western Europe (Germany, Belgium, Netherlands) as well as in the US. Of greatest health concern are the high SO2 emissions in India, which stand out due to missing flue gas treatment and cause a particularly high share of local health impacts despite a limited number of emission sites. At the same time, the massive infrastructure and export capacity build-up in China in recent years is taking a substantial toll on regional and global health and requires more stringent regulation than in the rest of the world due to unfavorable environmental conditions and high population densities. The current phase-out of highly emitting industries in Europe is found not to have started with sites having the greatest health impacts. Our detailed site-specific emission and impact inventory is able to highlight more effective alternatives and to track future progress.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average