Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset .
Data sources: ZENODO
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicting metal-protein interactions using cofolding methods: Status quo

Authors: Dürr, Simon L.; Rothlisberger, Ursula;

Predicting metal-protein interactions using cofolding methods: Status quo

Abstract

Metals play important roles for enzyme function and many therapeutically relevant proteins. Despite the fact that the first drugs developed via computer aided drug design were metalloprotein inhibitors, many computational pipelines still discard metalloproteins due to the difficulties of modelling them computationally. New "cofolding" methods such as AlphaFold3 (AF3) and RoseTTAfold-AllAtom (RFAA) promise to improve this issue by being able to dock small molecules in presence of multiple complex cofactors including metals or covalent modifications. Here, we analyze the current status for metal ion prediction using these methods. We find that currently only AF3 provides realistic predictions for metal ions, RFAA in contrast does perform worse than more specialized models such as AllMetal3D in predicting the location of metal ions accurately. We find that AF3 predictions are consistent with expected physico-chemical trends/intuition whereas RFAA often also predicts unrealistic metal ion locations.

Powered by OpenAIRE graph
Found an issue? Give us feedback
Funded by