research data . Dataset . 2020

Reliance on Science in Patenting

Marx, Matt; Aaron Fuegi;
Open Access English
  • Published: 13 Oct 2020
  • Publisher: Zenodo
Abstract
This dataset contains both front-page and in-text citations from patents to scientific articles through 2020. If you use the data, please cite these two articles: 1. M. Marx, & A. Fuegi, "Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles" (2020), Strategic Management Journal 41(9):1572-1594. (https://onlinelibrary.wiley.com/doi/full/10.1002/smj.3145) 2. M. Marx & A. Fuegi, "Reliance on Science by Inventors: Hybrid Extraction of In-text Patent-to-Article Citations." forthcoming in Journal of Economics and Management Strategy. (http://doi.org/10.1111/jems.12455) The datafile containing the citations is _pcs_mag_doi_pmid.tsv. DOIs and PMIDs provided where available. Each citation has the applicant/examiner flag, confidence score (1-10), and whether the reference was a) only on the front page, b) only in the body text, or c) in both. _data_description.pdf has full details. bodytextknowngood.tsv contains the known-good references for calculating recall. The remaining files redistribute much of the *final* edition of the Microsoft Academic Graph (12/20/2021). Please also cite Sinha, A, et al. 2015. Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference on World Wide Web (WWW ’15 Companion). ACM, New York, NY, USA, 243-246. Note that jif.zip, jcif.zip, and the OECD/wos-category crosswalks are derivatives of MAG and may not be updated through the end of 2021. These data are under an Open Data Commons Attribution license (ODC-By); use them for anything as long as you cite us! Source code for front-page matches is at https://github.com/mattmarx/reliance_on_science and for in-text is at https://github.com/mattmarx/intextcitations. Questions & feedback to support@relianceonscience.org. This work is sponsored by the Alfred P. Sloan Foundation grant #G-2021-16822.
{"references": ["Marx, Matt and Aaron Fuegi, \"Reliance on Science in Patenting: USPTO Front-Page Citations to Scientific Articles\" (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331686)", "Sinha, Arnab, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference on World Wide Web (WWW '15 Companion). ACM, New York, NY, USA, 243-246"]}
Subjects
free text keywords: innovation, patenting, science, citation
Open Access
ZENODO
Dataset . 2020
Providers: ZENODO
Open Access
ZENODO
Dataset . 2020
Providers: ZENODO
Open Access
ZENODO
Dataset . 2019
Providers: ZENODO
Open Access
ZENODO
Dataset . 2021
Providers: ZENODO
Any information missing or wrong?Report an Issue