Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

LMU Fast Decompression Experiment Data for "Standing Shock Prevents Propagation of Sparks in Supersonic Explosive Flows"

Authors: von der Linden, Jens; Kimblin, Clare; McKenna, Ian; Bagley, Skyler; Li, Hsiao-Chi; Houim, Ryan; Kueny, Christopher S.; +7 Authors

LMU Fast Decompression Experiment Data for "Standing Shock Prevents Propagation of Sparks in Supersonic Explosive Flows"

Abstract

Background This data is camera images and nozzle pressure gauge voltage traces from rapid decompression shots at the LMU shock tube facility. This data is discussed in the "Materials and Methods" section of the paper "Standing Shock Prevents Propagation of Sparks in Supersonic Explosive Flows". Electric sparks and explosive flows have long been associated with each other. Flowing dust particles originate charge through contact and separate based on inertia, resulting in strong electric fields supporting sparks. These sparks can cause explosions in dusty environments, especially those rich in carbon, such as coal mines and grain elevators. Recent observations of explosive events in nature and decompression experiments indicate that supersonic flows of explosions may alter the electrical discharge process. Shocks may suppress parts of the hierarchy of the discharge phenomena, such as leaders. In our decompression experiments, a shock tube ejects a flow of gas and particles into an expansion chamber. We imaged an illuminated plume from the decompression of a mixture of argon and <100 mg of diamond particles and observe sparks occurring below the sharp boundary of a condensation cloud. We also performed hydrodynamics simulations of the decompression event that provide insight into the conditions supporting the observed behavior. Simulation results agree closely with the experimentally observed Mach disk shock shape and height. This represents direct evidence that the sparks are sculpted by the outflow. The spatial and temporal scale of the sparks transmit an impression of the shock tube flow, a connection that could enable novel instrumentation to diagnose currently inaccessible supersonic granular phenomena. Accessing Data The prefixes of the filenames correspond to the shot dates and times listed in table S1 of the paper. The "_camera.zip" files contains tiff images of the camera frames. The ".ixc" file in each zip lists camera settings in plain text. The ".dat" file contains the voltage measurement of the nozzle pressure gauge. Row 1 is the header, row 2 is the time in seconds, and row 3 is the voltage of the pressure gauge in Volts. The peak pressure in the header can be used to relate the voltage to pressure.

This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and Mission Support and Test Services, LLC, under Contract No. DE-NA0003624 with support from the Site-Directed Research and Development program, DOE/NV/03624--0956, and in part by the European Plate Observing Systems Transnational Access program of the European Community HORIZON 2020 research and innovation program under grant N 676564. CC acknowledges the support from the DFG grant CI 25/2-1 and from the European Community HORIZON 2020 research and innovation programme under the Marie Sklodowska Curie grant nr. 705619. LLNL-MI-817289. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, complete- ness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific com- mercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

{"references": ["C. Cimarelli, M. Alatorre-Ibargengoitia, U. Kueppers, B. Scheu, D. Dingwell, Experimen- tal generation of volcanic lightning. Geology 42, 79\u201382 (2014)"]}

Related Organizations
Keywords

Mach disk, Compressible Hydrodynamics, Rapid Decompression

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 40
    download downloads 26
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
  • 40
    views
    26
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
40
26
Funded by
EC| EPOS IP
Project
EPOS IP
EPOS Implementation Phase
  • Funder: European Commission (EC)
  • Project Code: 676564
  • Funding stream: H2020 | RIA
,
EC| VOLTAIC
Project
VOLTAIC
VOLcanic lighTning: a lAb and fIeld ApproaCh
  • Funder: European Commission (EC)
  • Project Code: 705619
  • Funding stream: H2020 | MSCA-IF-EF-ST
sysimport:actionset
Related to Research communities
EPOS
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.