Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DANS-EASYarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DANS-EASY
Dataset . 2018
Data sources: B2FIND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DRYAD; ZENODO
Dataset . 2018
License: CC 0
Data sources: ZENODO; Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: Shifts in plant nutrient content in combined warming and drought scenarios may alter reproductive fitness across trophic levels

Authors: Rosenblatt, Adam E.;

Data from: Shifts in plant nutrient content in combined warming and drought scenarios may alter reproductive fitness across trophic levels

Abstract

Ecological effects of climate change are difficult to predict because climate change is a multi‐variable phenomenon that can impact ecosystems through diverse pathways. Despite this fact, climate change ecology research has been dominated by relatively simplistic experiments and models. To test the importance of assessing more realistic climate and ecological scenarios an experiment was conducted to assess the interactive effects of multiple climate change variables (warming, drought) on survival and reproductive fitness across three trophic levels within a well‐studied terrestrial food web. The effects of warming and drought on the nutrient content of plants and how such changes may affect consumers was also examined. Results showed that warming and drought in combination can significantly alter the nutrient profiles of plants relative to climate variables in isolation and that multi‐variable climate change can severely impact plant reproductive fitness. Also, consumer nutrient profiles did not shift in accordance with their resources, but reproductive fitness of grasshoppers was nonetheless severely affected by warming and drought in combination. Predator survival rates decreased by more than 50% under all climate change scenarios, highlighting the variable responses of different trophic levels. The impacts across the entire food web were likely caused by a combination of metabolic changes due to warming, dehydration, altered nutrient availability and resource quality, and behavioral shifts. The results suggest that realistic climate change scenarios could dramatically affect long‐term demographic patterns as well as food web dynamics, and that single variable studies may fail to reveal the true impacts of climate change.

Grasshopper, spider, goldenrod, and environmental dataData for organism survival, reproduction, stoichiometry, as well as temperature and soil water content data.Dryad.xlsx

Related Organizations
Keywords

medicine and health care, Melanoplus femurrubrum, grass, Life Sciences, Medicine, Life sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average