Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2021
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2021
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2021
License: CC 0
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: Climate and vegetation structure shape ant communities along elevational gradients on the Colorado Plateau

Authors: Uhey, Derek; Hofstetter, Richard;

Data from: Climate and vegetation structure shape ant communities along elevational gradients on the Colorado Plateau

Abstract

Aim: Terrestrial animal communities are largely shaped by vegetation and climate. With climate also shaping vegetation, can we attribute animal patterns solely to climate? To understand this, we compare the relative and interactive effects of climate and vegetation on an animal community. Our study observes ant community changes along climatic gradients (i.e. elevational gradients) within different habitat types (i.e. open and forest). We compare the explanatory powers and effect sizes of climate and vegetation variables on ant communities and describe what drives elevational distributions of ant species. Location: Colorado Plateau, southwestern United States Taxon: Formicidae Methods: We sampled ants and vegetation along two elevational gradients spanning 1132m with average annual temperature and precipitation differences of 5.7C° and 645 mm, respectively. Regression analysis and structural equation modeling was then used to test the relative effects of climate and vegetation variables on ant communities. Results: Climate variables had the strongest correlations and the largest effect sizes on ant communities, while vegetation composition, richness, and primary productivity were relatively small. Precipitation was the strongest predictor for most ant community metrics. Ant richness and abundance had a negative relationship with precipitation in forested habitats, and positive in open habitats. Main conclusions: Our results show strong direct climate effects on ants with little or no effects of vegetation composition or primary productivity, but contrasting patterns between vegetation type (i.e. forested vs open) with precipitation. This indicates vegetation structure can modulate climate responses of ant communities. Our study demonstrates climate-animal relationships may vary among vegetation types which can impact both findings from elevational studies and how communities will react to changes in climate.

Ants through pit fall traps, vegetation through point intercept in 1m2 plots

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
  • 3
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
3