Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODO; DRYADarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO; DRYAD
Dataset . 2021
License: CC 0
Data sources: ZENODO; Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dataset for Ecomorphological diversification of squamates in the Cretaceous

Authors: Herrera-Flores, Jorge A.; Stubbs, Thomas L.; Benton, Michael J.;

Dataset for Ecomorphological diversification of squamates in the Cretaceous

Abstract

Squamates (lizards and snakes) are highly successful modern vertebrates, with over 10,000 species. Squamates have a long history, dating back to at least 240 million years ago (Ma), and showing increasing species richness in the Late Cretaceous (84 Ma) and early Paleogene (66–55 Ma). We confirm that the major expansion of dietary functional morphology happened before these diversifications, in the mid Cretaceous, 110–90 Ma. Until that time, squamates had relatively uniform tooth types, which then diversified substantially and ecomorphospace expanded to modern levels. This coincides with the Cretaceous Terrestrial Revolution, when angiosperms began to take over terrestrial ecosystems, providing new roles for plant-eating and pollinating insects, which were in turn new sources of food for herbivorous and insectivorous squamates. There was also an early Late Cretaceous (95–90 Ma) rise in jaw size disparity, driven by the diversification of marine squamates, particularly early mosasaurs. These events established modern levels of squamate feeding ecomorphology before the major steps in species diversification, confirming decoupling of diversity and disparity. In fact, squamate feeding ecomorphospace had been partially explored in the Late Jurassic and Early Cretaceous, and jaw innovation in Late Cretaceous squamates involved expansions at the extremes of morphospace.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities