Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DRYAD; ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DRYAD; ZENODO
Dataset . 2019
License: CC 0
Data sources: ZENODO; Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: Temporal lobe epilepsy: hippocampal pathology modulates white matter connectome topology and controllability

Authors: Bernhardt, Boris C.; Fadaie, Fatemeh; Liu, Min; Caldairou, Benoit; Gu, Shi; Jefferies, Elisabeth; Smallwood, Jonathan; +3 Authors

Data from: Temporal lobe epilepsy: hippocampal pathology modulates white matter connectome topology and controllability

Abstract

OBJECTIVE. To assess whether HS severity is mirrored at the level of large-scale networks. METHODS. We studied preoperative high-resolution anatomical and diffusion-weighted MRI of 44 TLE patients with histopathological diagnosis of HS (n=25; TLE-HS) and isolated gliosis (n=19; TLE-G), and 25 healthy controls. Hippocampal measurements included surface-based subfield mapping of atrophy and T2 hyperintensity indexing cell loss and gliosis, respectively. Whole-brain connectomes were generated via diffusion tractography and examined using graph theory along with a novel network control theory paradigm which simulates functional dynamics from structural network data. RESULTS. Compared to controls, we observed markedly increased path length and decreased clustering in TLE-HS compared to controls, indicating lower global and local network efficiency, while TLE-G showed only subtle alterations. Similarly, network controllability was lower in TLE-HS only, suggesting limited range of functional dynamics. Hippocampal imaging markers were positively associated with macroscale network alterations, particularly in ipsilateral CA1-3. Systematic assessment across several networks revealed maximal changes in the hippocampal circuity. Findings were consistent when correcting for cortical thickness, suggesting independence from grey matter atrophy. CONCLUSIONS. Severe HS is associated with marked remodeling of connectome topology and structurally-governed functional dynamics in TLE, as opposed to isolated gliosis which has negligible effects. Cell loss, particularly in CA1-3, may exert a cascading effect on brain-wide connectomes, underlining coupled disease processes across multiple scales.

Data_phen_conn_dryadPhenotypic information and mean connectome feature data for Bernhardt et al. (2019) Temporal lobe epilepsy: hippocampal pathology modulates white matter connectome topology and controllability. Neurology

Keywords

[ 68 ] Hippocampal sclerosis, Epilepsy surgery, Hippocampal sclerosis, [ 120 ] MRI, temporal lobe epilepsy, Temporal lobe epilepsy, [ 66 ] Epilepsy surgery, MRI

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 20
    download downloads 16
  • 20
    views
    16
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
20
16
Funded by
Related to Research communities
Neuroscience