Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PANGAEA
Dataset . 2019
Data sources: B2FIND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Zooplankton communities in ballast water

Authors: Lin, Yaping; Zhan, Aibin; Hernandez, Marco R; Paolucci, Esteban; MacIsaac, Hugh J; Briski, Elizabeta;

Zooplankton communities in ballast water

Abstract

1. Ballast water has been identified as a leading vector for introduction of non-indigenous species (NIS). Recently, the International Maritime Organization (IMO) implemented management standards – D-2 – where all large, commercial ships trading internationally are required to adopt an approved treatment system using technologies such as ultraviolet radiation or chlorination. However, current management regulations are based only on the total abundance of viable taxa transported (i.e., total propagule pressure), largely ignoring species richness (i.e., colonization pressure).2. To determine the efficacy of chlorine treatment in reducing invasion risks and changes in transported biological communities inside ballast tanks, we used DNA metabarcoding-based approaches to estimate colonization pressure (here, the number of species/Operational Taxonomic Units (OTUs) introduced) and relative propagule pressure (relative abundance of each species/OTU) of zooplankton communities in control and chlorine treated tanks during four transatlantic voyages. 3. Our study demonstrated that transport itself did not significantly reduce colonization pressure of zooplankton species, nor did chlorine treatment. Chlorine treatment altered community structure by reducing relative propagule pressure of some taxa such as Mollusca and Rotifera, while increasing relative propagule pressure of some Oligohymenophorea and Copepoda species.4. Synthesis and applications. Chlorine treatment may not reduce invasion risks as much as previously thought. Reduction in total propagule pressure does not mean reduction in abundance of all species equally. While some taxa might experience drastically reduced abundance, others might not change at all or increase due to hatching from dormant stages initiated by chlorine exposure. Therefore, management strategies should consider changes in total propagule pressure and colonization pressure when forecasting risk of new invasions. We therefore recommend adopting new approaches, such as DNA metabarcoding-based methods, to assess the whole biodiversity discharged from ballast water. As species responses to chlorine treatment are variable and affected by concentration, we also recommend a combination of different technologies to reduce introduction risks of aquatic organisms.

Supplement to: Lin, Yaping; Zhan, Aibin; Hernandez, Marco R; Paolucci, Esteban; MacIsaac, Hugh J; Briski, Elizabeta (2020): Can chlorination of ballast water reduce biological invasions? Journal of Applied Ecology, 57(2), 331-343

The zip file includes:1. raw_data_clean.fasta: Raw sequence reads of zooplankton in ballast water samples2. raw_data.fasta: OTU representative sequences3. OTU_table.xlsx: OTU table

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
Average
Average
Average
Funded by
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
Related to Research communities
European Geothermal Research and Innovation Search Engine
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.