research data . Dataset . 2019

A Convolutional Neural Network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery

Fricker, Geoffrey A; Ventura, Jonathan Daniel; Wolf, Jeffrey; North, Malcolm P.; Davis, Frank W.; Franklin, Janet;
Open Access English
  • Published: 27 Sep 2019
  • Publisher: Zenodo
Abstract
<p>Published online:&nbsp;<a href="https://www.mdpi.com/2072-4292/11/19/2326">https://www.mdpi.com/2072-4292/11/19/2326</a></p> <p>DOI: 10.3390/rs11192326</p> <p><strong>Abstract:</strong></p> <p>In this study, we automate tree species classification and mapping using field-based training data, high spatial resolution airborne hyperspectral imagery, and a convolutional neural network classifier (CNN). We tested our methods by identifying seven dominant trees species as well as dead standing trees in a mixed-conifer forest in the Southern Sierra Nevada Mountains, CA (USA) using training, validation, and testing datasets composed of spatially-explicit transects an...
Subjects
free text keywords: shapefile, tree species, convolutional neural network, hyperspectral imagery, NEON, Medicine, Ecology, Plant Biology, 59999 Environmental Sciences not elsewhere classified, 69999 Biological Sciences not elsewhere classified, 80699 Information Systems not elsewhere classified
Download fromView all 8 versions
Zenodo
Dataset . 2019
Provider: Datacite
Zenodo
Dataset . 2019
Provider: Zenodo
Zenodo
Dataset . 2019
Provider: Datacite
Zenodo
Dataset . 2019
Provider: Datacite
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
research data . Dataset . 2019

A Convolutional Neural Network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery

Fricker, Geoffrey A; Ventura, Jonathan Daniel; Wolf, Jeffrey; North, Malcolm P.; Davis, Frank W.; Franklin, Janet;